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Abstract—Corresponding to the concepts of Wiener index
and distance of the vertex, in this paper, we present the concepts
of Wiener odd (even) index of G as sum of the distances
between all pairs of vertices of G satisfying the distances
are all odd (even) and denote them Wodd(G) and Wodd(G)
respectively. Based on the concepts of the two indices, we prove
theoretically that Wiener odd index is not more than its even
index for general BC-Trees. Closed formulae of the two indices
are also provided for path BC-tree, star, k-extending star tree
and caterpillar BC-tree. Meanwhile, the extreme values of
Wodd(T ) of n vertices BC-trees are characterized as well.

Keywords-Wiener odd (even) index; odd (even) distance of
the vertex; BC-tree; k-extending star; caterpillar BC-tree;

I. INTRODUCTION

All graphs G = (V (G), E(G)) in this paper will be a
finite, undirected and connected, V (G) and E(G) denote the
vertex set and the edge set of G, respectively. Let dG(u, v)
(or simply d(u, v) when no confusion arises) denote the
distance between the vertices u and v in G. For a vertex v of
G, define the distance of the vertex as the sum of distances
from v to all other vertices.

gG(v) =
∑

u∈V (G)

dG(v, u),

define the odd(even) distance of the vertex v as the sum of
distances from v to all other vertices of G satisfying the
distances are all odd(even). i.e.

godd,G(v) =
∑

u∈V (G)∧dG(v,u)≡1(mod 2)

dG(v, u),

and

geven,G(v) =
∑

u∈V (G)∧dG(v,u)≡0(mod 2)

dG(v, u).

Let W (G) = 1
2

∑
v∈V (G)

gG(v) denote the Wiener index of

G, which is the sum of distances for all unordered pairs of
vertices. Let Wodd(G) = 1

2

∑
v∈V (G)

godd,G(v)(Weven(G) =

1
2

∑
v∈V (G)

geven,G(v)) denote the Wiener odd(even) index of

G, which is the sum of distances between all unordered

pairs of vertices satisfying the distances are all odd(even).
Obviously, we have gG(v) = godd,G(v) + geven,G(v),
W (G) =Wodd(G) +Weven(G)

A tree T = (V,E) is a connected, acyclic graph. A vertex
of degree one will be called a pendent vertex or leaf of
T . A tree on n vertices has at least 2 and at most n − 1
pendent vertices. The (unique) n-vertex trees with 2 and n−
1 pendent vertices are called the path and star, respectively,
and are denoted by Pn and K1,n−1, respectively.

A tree is called a BC-tree (the block-cutpoint-tree or the
bicolorable tree) if the distance between any two leaves
is even see Harary and Plummer [1], [2]. BC-tree have
many special properties and applications in graph theory,
chemistry, computer and brain science, see [3], [4], [5], [6],
[7].

Define k-extending star tree the tree constructed by adding
n− 1 paths with length k− 1 to each of the n− 1 pendant
vertices of the star K1,n−1 denoted by Kk

1,n−1 , the center
vertex is denoted as c, for any vertex u ∈ V (Kk

1,n−1), Let
the distance dKk

1,n−1
(u, c) between u and c the height of u.

By this definition, Kk
1,n−1 is the star K1,n−1 when k = 1.

A caterpillar tree is a tree, which has a path, such that
every vertex not on the path is adjacent to some vertex on
the path. A caterpillar BC-tree is both a caterpillar tree and
a BC-tree. Pn is also a BC-tree, when n is odd. For standard
notations in graph theory, [8], [9] may be consulted.

The rest of the paper is organized as follows. Section
II describes related works on Wiener index and BC-trees.
In Section III, we study the relationship between Wiener
odd index Wodd(G) and Wiener even index Wodd(G) of
general BC-tree, path BC-tree, star, k-extending star tree,
caterpillar BC-tree, and we also give out the maximum and
minimum value of Wodd(T ) and the extremal trees attaining
these values as well. Finally the conclusions and some open
problems are presented in Section IV.

II. RELATED WORKS

The Wiener index was first developed by Wiener [10] in
1947. And the graphical invariant W (G) has been studied in
[11], [12], [13], [14] under different names such as distance,
transmission, total status and sum of all distances. This



concept has been one of the most widely used descriptors
in quantitative structure activity relationships, as the Wiener
index has been shown to have a strong correlation with
the chemical properties of a chemical compound [15]. The
Wiener index and the average distance rank among those
graph-theoretical parameters that are of most interest in other
fields. Dobrynin [11] provided a very comprehensive survey
about Wiener index.

Chemical structures of organic compounds are character-
ized numerically by a variety of structural descriptors, one of
the earliest and most widely used being the Wiener index W ,
derived from the interatomic distances in a molecular graph.
Extensive use of such structural descriptors or topological
indices has been made in drug design, screening of chemical
databases, and similarity and diversity assessment. A new set
of topological indices is introduced representing a partition-
ing of the Wiener index based on counts of even and odd
molecular graph distances by Ivanciuc [16]. These new in-
dices are further generalized by weighting exponents which
can be optimized during the quantitative structure-activity/-
property relationship (QSAR/QSPR) modeling process. In
[16], Ivanciuc also tested these novel topological indices
in QSPR models for the boiling temperature, molar heat
capacity, standard Gibbs energy of formation, vaporization
enthalpy, refractive index, and density of alkanes, and Ivan-
ciuc [16] conluded that in many cases, the even/odd distance
indices proposed here give notably improved correlations.

Namely, like the Wiener index, the Wiener odd and even
index of graph may also be meaningful topological index,
which can be used in mathematics, chemistry, bioinformatics
and brain science. Hence, the study of Wiener odd and even
index of graph is of great significance.

III. WIENER ODD (EVEN) INDEX ON BC-TREES

A. Wiener odd (even) index on general BC-trees

Since the conception of the block-cutpoint-tree (i.e. BC-
tree) was proposed, it has been drawing researchers’ atten-
tion and concern worldwide, not only in the field of mathe-
matics and computer science, but also in chemistry and brain
science. See Barefoot [5], Mkrtchyan [17], Misiołek and
Chen [18], Paton [19], Gagarin and Labelle [20], Nakayama
and Fujiwara [21], Yang and Wang [22]

It is well known that the Wiener index among trees on n
vertices is minimized by the star K1,n−1 and is maximized
by the n-vertex path Pn, see Entringer et al. [23], or Lovász
[24].

Since BC-tree is a tree with special nature, next, we will
examine the the Wiener odd (even) index on BC-tree.

Lemma 1: [23] The Wiener index of n-vertex path Pn is
(n−1)2, more than any other tree on n vertices. The Wiener
index of star K1,n−1 is (n3 − n)/6, fewer than any other
tree on n vertices.

Theorem 3.1: Let T be a BC-tree on n vertices, then
Wodd(T ) ≤Weven(T ).

Proof: For any BC-tree T , we can always find a vertex
v, such that each two trees after splitting at v are also BC-
trees, and one of them is a star. For illustration see Fig. 1.
Let T ′′ be a star on p+ 2(p ≥ 1) vertices, for brevity, set

S1 = {w|w ∈ V (T ′)\v ∧ dT ′(w, v) ≡ 0(mod 2)},
S2 = {w|w ∈ V (T ′) ∧ dT ′(w, v) ≡ 1(mod 2)},
R1 = {w|w ∈ V (T ′′)\v ∧ dT ′′(w, v) ≡ 0(mod 2)},
R2 = {w|w ∈ V (T ′′) ∧ dT ′′(w, v) ≡ 1(mod 2)},
N1 = |S1|, N2 = |S2|, M1 = |R1|, M2 = |R2|,

geven,T ′(v) =
∑
w∈S1

dT ′(w, v), godd,T ′(v) =
∑
w∈S2

dT ′(w, v)

geven,T ′′(v) =
∑
w∈R1

dT ′′(w, v), godd,T ′′(v) =
∑
w∈R2

dT ′′(w, v)

BC tree  BC tree  

Splitting T at v

BC tree T

TT

T T

TT
v

uu

v

Figure 1. Split of BC-tree T .

Since T ′ is a BC-tree, By the definition of BC-tree, it is
not difficult to obtain

N1 ≥ N2, godd,T ′(v) ≤ geven,T ′(v). (1)

It is clear that the theorem holds for n = 3, 4, 5, suppose
the theorem holds for BC-trees of orders < n, then, we
categorise the unordered pairs of vertices of T satisfying
the distances are all odd as follow:

(1){(p, q)|p ∈ V (T ′′), q ∈ V (T ′′) ∧ dT ′′(p, q) ≡ 1(mod 2)};
(2){(p, q)|p ∈ V (T ′), q ∈ V (T ′) ∧ dT ′(p, q) ≡ 1(mod 2)};
(3){(p, q)|p ∈ R1, q ∈ S2};
(4){(p, q)|p ∈ R2, q ∈ S1}.

Similarly, the unordered pairs of vertices of T satisfying
the distances are all even are as follow:

(5){(p, q)|p ∈ V (T
′′
), q ∈ V (T

′′
) ∧ dT ′′ (p, q) ≡ 0(mod 2)};

(6){(p, q)|p ∈ V (T
′
), q ∈ V (T

′
) ∧ dT ′ (p, q) ≡ 0(mod 2)};

(7){(p, q)|p ∈ R1, q ∈ S1};
(8){(p, q)|p ∈ R2, q ∈ S2}.

With the above notations, it is easy to know that M1 =
p,M2 = 1. By analyzing, the sum of the distances of
the unordered pairs of vertices of cases (3)+(4) and cases
(7)+(8) is p × godd,T ′ (v) + 2pN2 + geven,T ′ (v) + N1 and
p × geven,T ′ (v) + 2pN1 + godd,T ′ (v) + N2 respectively.



Obviously, cases (1) and (2) are Wodd(T
′) and Wodd(T

′′);
cases (5) and (6) are Weven(T

′) and Weven(T
′′). Therefore,

Wodd(T )−Weven(T ) =

Wodd(T
′)−Weven(T

′) +Wodd(T
′′)−Weven(T

′′)

+ (p− 1)(godd,T ′ (v)− geven,T ′ (v)) + (2p− 1)(N2 −N1)

(2)

By induction, Wodd(T
′) ≤ Weven(T

′), Wodd(T
′′) ≤

Weven(T
′′), since p ≥ 1, combining (1), we obtain

Wodd(T ) ≤Weven(T ). The theorem thus holds.
Theorem 3.2: The Wiener odd index of star K1,n−1 is

n− 1, fewer than any other BC-trees on n vertices and the
maximum value of Wiener odd index is (n3 − n)/12.

Proof: Let T be an arbitrary n vertices BC-tree, It’s
easy to see that Wodd(T ) ≥ n − 1, and it is not hard to
observe that Wodd(K1,n−1) = n− 1, therefore, star K1,n−1
minimizes the Wiener odd index. Next, we prove any other
BC-tree on n vertices can not attain this value.

Suppose l is a leaf of T , v is the neighbor vertex of l,
if the distances between all other vertices and v is 2, then
they are neighbors of v, otherwise, there will exist a vertex
w, such that dT (l, w) = 3, then Wodd(T ) > n − 1. Hence
T is star.

By Theorem 3.1 and Lemma 1, we have

Wodd(T ) ≤W (T )/2 = (n3 − n)/12.

By simple calculation, we have Wodd(Pn−1) =
Weven(Pn−1) = (n3 − n)/12 for n is odd, but it
isn’t the unique BC-tree that can attain this maximum
value.

Székely and Wang [25] studied the problem of enumerat-
ing subtrees of trees. They proved the following results:

Lemma 2: (Székely and Wang [25]) The path Pn has(
n+1
2

)
subtrees, fewer than any other trees of n vertices.

The star K1,n−1 has 2n−1 + n− 1 subtrees, more than any
other trees of n vertices.

In [22], we studied the BC-subtrees of K1,n−1 and Pn.
And we have the following theorems.

Lemma 3: [22]The star K1,n−1 has 2n−1 − n BC-
subtrees, more than any other trees of n vertices.

Lemma 4: [22]The number of BC-subtrees of path Pn is

ηBC(Pn) =

{
n(n− 2)/4 n ≡ 0(mod 2),

(n− 1)2/4 n ≡ 1(mod 2).

fewer than any other n-vertices tree.
We know that star K1,n−1 is a BC-tree, and Pn is also a

BC-tree when n is odd. By Theorem 3.2, Lemma 3, Lemma
4 we have K1,n−1 minimizes the Wiener odd index and
maximizes the BC-subtrees among BC-trees on n vertices;
Pn maximizes the Wiener odd index and minimizes the BC-
subtrees among BC-trees on n(n is odd) vertices.

We see here an amazing and not yet understood rela-
tionship between the Wiener odd index and the number of

BC-subtrees which is “within certain classes of BC-trees of
a fixed parameter, the smaller the number of BC-subtrees
is, the bigger the Wiener odd index is”. Unfortunately this
relationship does not extend as expected. See Fig. 2. T0 and
T
′

0 are BC-trees on 12 vertices. Simple calculations show
that Wodd(T0) = 69, Wodd(T

′
0) = 73, ηBC(T0) = 183,

ηBC(T
′
0) = 252(where ηBC(T0) denotes the BC-subtrees

number of T ), we have Wodd(T0) < Wodd(T
′
0), though

ηBC(T0) < ηBC(T
′
0).

BC-tree  
0

T BC-tree  
0

T

Figure 2. The counter-example caterpillar tree T

B. Wiener odd (even) index on k-extending star trees

Since k-extending star tree with 2 branches is a path
BC-tree, by Theorem 3.2, its Wiener even index equals its
Wiener odd index. Thus, we only consider n ≥ 4.

Theorem 3.3: Let Kk
1,n−1 be a k-extending star tree with

n − 1(n ≥ 4) branches, then, Weven(K
k
1,n−1) equals

Wodd(K
k
1,n−1) (resp. Wodd(K

k
1,n−1) + (k + 1)(n− 1)(n−

3)/2) for n is even(resp. odd).
Proof: We discuss it for k is even and odd respectively.

(1) For k is even, using the splitting method and denota-
tions as in Theorem 3.1, and for the sake of convenience,
for branch bi (i = 1, 2, . . . , n−1), label the vertices of bi as
this: bi = vi0vi1vi2 . . . vik−2vik−1vik where vi0 is the center
vertex c and vik is the leaf vertex, then we split Kk

1,n−1 at
vertex vik−j (j = 2, 4, 6, . . . , k − 2, k) sequentially each
time, T ′ and T ′′ are as in Fig. 3(a) after the first splitting.

Simple calculations show that Wodd(T
′′) = Weven(T

′),
P = 1, and N1 = N2, hence, by (2), Wodd(T ) −
Weven(T ) =Wodd(T

′)−Weven(T
′). Continue the splitting

process until the whole branch bi is deleted, denote the tree
at this time as T0, then

Wodd(T )−Weven(T ) =Wodd(T0)−Weven(T0)

continue deleting this way until T becomes a k-extending
star tree with 2 branches, we denote it as T ′0, then we have

Wodd(T )−Weven(T ) =Wodd(T
′
0)−Weven(T

′
0).

Since Wodd(T
′
0) = Weven(T

′
0), therefore, Wodd(T ) =

Weven(T ).
(2) For k is odd, as the discussion for n is even, similarly,

after the first splitting, we have Wodd(T ) − Weven(T ) =
Wodd(T

′) − Weven(T
′) − (n − 3) by (2). Proceeding the

splitting until T is splitted to a tree with only one leaf in
height 1 and the other n− 2 leaves are in height k, see Fig.
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Figure 3. The splitting illustration of Kk
1,n−1

3(b), and we denote at this time as T1, then we have

Wodd(T )−Weven(T ) =Wodd(T1)−Weven(T1)

− (k − 1)(n− 3)/2.

Next, choose another branch, go on splitting, until T is
split to a star K1,n−1, then we have

Wodd(T )−Weven(T ) =Wodd(K1,n−1)−Weven(K1,n−1)

− (n− 1)(k − 1)(n− 3)/2.

By Lemma 1 and Theorem 3.2, we have Wodd(K1,n−1)−
Weven(K1,n−1) = −(n− 1)(n− 3). Therefore

Weven(T ) =Wodd(T ) + (k + 1)(n− 1)(n− 3)/2.

The theorem holds.

C. Wiener odd (even) index on caterpillar BC-trees

Caterpillars were first studied in a series of papers by
Harary and Schwenk [26], [27]. And they have many charac-
terizations and generalizations such as a chordal graph with
exactly n−k maximal cliques, each containing k+1 vertices

which we call k-tree and lobster graph. Caterpillar trees have
been used in chemical graph theory to represent the structure
of benzenoid hydrocarbon molecules and received more and
more attention by the researchers.

Combining the special property of BC-trees, next, we
examine the caterpillar BC-tree.

Consider the caterpillar tree T with diameter l (l >= 2)(l
is even by definition)in Fig. 4, x and y are leaves on the
diameter. After the deletion of all the edges of PT (x, y)
from T , some connected components will remain. Let Ti
denote the star on ni + 1 vertices with center vertex vi, for
i = 1, 2, . . . , l/2 (l ≥ 2).

...

...

... ... ... ...

1
n

2
n 3

n ( 2)/2ln /2l
n

1
v 2

v 3
v

( 2)/2lv /2l
v

/2l
T( 2)/2lT

1
w

2
w

3
w ( 2)/2lw( 4)/2lwx y

1
T

2
T

3
T

Figure 4. The caterpillar BC-tree T with diameter l.

Theorem 3.4: Let T be the caterpillar BC-tree described
above. Then, Weven(T ) > Wodd(T ) and

Weven(T ) =

Wodd(T ) +

l/2∑
i=1

ni(ni + 2)−
(l−2)/2∑
i=1

(2ni + 1)

l/2∑
j=i+1

nj

+

(l−2)/2∑
i=1

ni(2

l/2∑
j=i+1

(j − i)(nj + 1)− (l − 2i)2/4).

Proof: We split the T as described in Theorem 3.1 at
vertex wi (i = 1, 2, . . . , (l − 2)/2) sequentially, then two
parts obtained each time were denoted as T ′′i and T ′i , where
T ′′i is a star on ni + 3 vertices and T ′i is a caterpillar BC-
tree, and it is easy to observe that T ′′i = K1,ni+2(i =
1, 2, . . . , (l−2)/2), T ′i (i = 1, 2, . . . , (l−2)/2) is a caterpillar
BC-tree. After splitting (l − 2)/2 times, the caterpillar BC-
tree T was splitted up.

For the sake of brevity, we give some denotations.

Si,1 = {w|w ∈ V (T
′

i )\wi ∧ dT ′i (w,wi) ≡ 0(mod 2)},

Si,2 = {w|w ∈ V (T
′

i ) ∧ dT ′i (w,wi) ≡ 1(mod 2)},

Ni,1 = |Si,1|, geven,T ′i
(wi) =

∑
w∈Si,1

dT ′i
(w,wi),

Ni,2 = |Si,2|, godd,T ′i
(wi) =

∑
w∈Si,2

dT ′i
(w,wi).

Meanwhile, we define pi = ni + 1(i = 1, 2, . . . , (l−2)2 ).



After splitting T at w1, Simple calculations show that

N1,1 =

l/2∑
j=2

nj + l/2− 1, N1,2 = l/2− 1,

geven,T ′1(w1) = 2

l/2∑
j=2

(j − 1)(nj + 1),

godd,T ′1(w1) = (l − 2)2/4, p1 = n1 + 1,

Wodd(T
′′
1 )−Weven(T

′′
1 ) = −n1(n1 + 2).

By (2), we have

Wodd(T )−Weven(T ) =Wodd(T
′
1)−Weven(T

′
1)

− n1(n1 + 2) + n1((l − 2)2/4− 2

l/2∑
j=2

(j − 1)(nj + 1))

− (2n1 + 1)

l/2∑
j=2

nj .

Proceeding this way, after splitting (l−2)/2 times, we have

Wodd(T )−Weven(T ) =Wodd(K1,nl/2+2)−Weven(K1,nl/2+2)

+

(l−2)/2∑
i=1

(Wodd(T
′′
i )−Weven(T

′′
i ))

+

(l−2)/2∑
i=1

(pi − 1)(godd,T ′i (wi)− geven,T ′i (wi))

+

(l−2)/2∑
i=1

(2pi − 1)(Ni,2 −Ni,1).

i.e.
Wodd(T )−Weven(T ) =Wodd(K1,nl/2+2)

−Weven(K1,nl/2+2)−
(l−2)/2∑
i=1

ni(ni + 2)

+

(l−2)/2∑
i=1

ni((l − 2i)2/4− 2

l/2∑
j=i+1

(j − i)(nj + 1))

+

(l−2)/2∑
i=1

(2ni + 1)

l/2∑
j=i+1

nj .

Since Wodd(K1,nl/2+2) − Weven(K1,nl/2+2) =
−nl/2(nl/2 + 2), the theorem thus holds.

Let Tϕ, Tφ be caterpillar BC-trees with the structure
as depicted in Fig. 4 with n′i(i = 1, 2, . . . , l2 ), w

′
i (i =

1, 2, . . . , l2 − 1) and n′′i (i = 1, 2, . . . , l2 ), w′′i (i =
1, 2, . . . , l2 − 1) respectively.

Theorem 3.5: Let Tϕ, Tφ be described above satisfing the
following condition: n′i + n′l

2+1−i = n′′i + n′′l
2+1−i (i =

1, 2, . . . , b l4c), then, Wodd(Tϕ) =Wodd(Tφ).

Proof: We split Tϕ and Tφ at vertex w′i (i =
1, 2, . . . , l2 − 1), w′′i (i = 1, 2, . . . , l2 − 1) sequentially, then,
after some algebraic operations, When l = 4k,

Wodd(Tϕ) =

l/4∑
j=1

l2 + 8j2 + 4l − 4lj − 8j

4
(n′j − 2 + n′l

2+1−j − 2) + l/2

Wodd(Tφ) =

l/4∑
j=1

l2 + 8j2 + 4l − 4lj − 8j

4
(n′′j − 2 + n′′l

2+1−j − 2) + l/2

When l = 4k + 2,

Wodd(Tϕ) =

(l−2)/4∑
j=1

l2 + 8j2 + 4l − 4lj − 8j

4
(n′j − 2 + n′l

2+1−j − 2)

+ l/2 +
l2 + 4l − 4

8
(n
′

(l+2)/4 − 2)

Wodd(Tφ) =

(l−2)/4∑
j=1

l2 + 8j2 + 4l − 4lj − 8j

4
(n′′j − 2 + n′′l

2+1−j − 2)

+ l/2 +
l2 + 4l − 4

8
(n′′(l+2)/4 − 2)

In either case, we know that if n′i + n′l
2+1−i = n′′i +

n′′l
2+1−i (i = 1, 2, . . . , b l4c), then, Wodd(Tϕ) = Wodd(Tφ).

IV. CONCLUSIONS AND FURTHER WORKS

In this paper, we presented the concepts of odd (even)
distance of the vertex v as the sum of distances from v
to all other vertices of G satisfying the distances are all
odd (even). We illustrated Wiener odd (even) index of G as
the sum of the distances between all pairs of vertices of G
satisfying the distances are all odd (even), which are denoted
as Wodd(G) (Weven(G)) respectively. And we proved that
the Wiener odd index is not more than its even index for
general BC-Trees. For k-extending star trees and caterpillar
BC-trees, we gave out the equalities of their Wiener even
index and odd index. We also gave out the maximum value
(n3 − n)/12 and minimum value n − 1 of Wodd(T ) on n
vertices BC-trees and the extremal BC-trees attaining these
values as well.

As the widely researched Wiener index, we can also
do some researches on odd (even) distance of vertex and



Wiener odd (even) index on special trees and general trees
correspondingly and comprehensively; Obviously, Wiener
odd and even index can also be regarded as topological
index. Hence another interesting direction is to explore the
role of these index in graph theory, chemistry and brain
networks.
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