
 
 

 

  

Abstract—In this paper, a PSO-based update memory for 
Improved Harmony Search (PSOUM-IHS) algorithm is 
proposed to learn the parameters of Flexible Beta Basis 
Function Neural Tree (FBBFNT) model. These parameters are 
the Beta parameters of each flexible node and the connected 
weights of the network. Furthermore, the FBBFNT’s structure 
is generated and optimized by the Extended Genetic 
Programming (EGP) algorithm. The combination of the 
PSOUM-IHS and EGP in the same algorithm is so used to 
evolve the FBBFNT model. The performance of the proposed 
evolving neural network is evaluated for nonlinear systems of 
prediction and identification and then compared with those of 
related models.   
Keywords—PSO-based update memory for Improved Harmony 
Search algorithm; Extended Genetic Programming; Flexible 
Beta Basis Function Neural Tree; nonlinear prediction systems, 
nonlinear identification systems. 

I. INTRODUCTION 
he Harmony Search (HS) algorithm proposed by  
Geem [1], was inspired from the jazz musical 
improvisation. The latter is done by a skilled 
musician (corresponding to the decision variable) 

who plays (generate) a note (value) to obtain a best harmony 
state (global optimum). The HS method is so considered as 
an evolutionary stochastic global optimization technique like 
genetic algorithm [38], bacterial foraging optimization 
algorithm [39, 40]. According to [1, 2], the HS algorithm 
outperforms the conventional mathematical optimization 
algorithms and the Genetic Algorithm [3]. Such algorithm 
has successfully been applied to solve some engineering 
applications such as robotics [4], routing problems [5], 
Transport energy modeling [6], etc.  

On the other hand, Artificial Neural Network (ANN) is a 
growing interdisciplinary field which considers the systems 
as adaptive, distributed and mostly nonlinear, three of the 
elements found in the real applications. It is placed at the 
crossroads of various biological-inspired approaches where 
it is considered as an abstract simulation of a real nervous 
system. ANN is composed of an interconnected group of 
artificial neurons distributing in layers to model complex 
relationships between inputs and outputs of the studied 
problem. It mimics also the learning behavior of biological 
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systems by updating its parameters (including 
interconnection weights and in certain cases transfer 
function parameters). 

The know-how accumulated, so, through advanced work 
in the process of ANN creating and learning showed that its 
reliability can be conditioned by the appropriate structure; 
the connection ways between the nodes; the chosen transfer 
function; and the training algorithm. Many efforts have been 
provided in the literature to address these issues. Yao [7] is 
one of the first researchers who has exploited possible 
benefits arising from the interactions between ANNs and 
evolutionary computation, to design and evolve ANN, and in 
such case the model is noted Evolving Artificial Neural 
Network (EANN). 

Recently several studies have proposed using HS 
algorithm for adjusting connected weights of artificial neural 
networks [8-11]. 

In this context is located the works presented in this 
paper. Indeed, a PSO-based update memory for Improved 
Harmony Search (PSOUM-IHS) algorithm is proposed to 
optimize the parameters of the Flexible Beta Basis Function 
Neural Tree (FBBFNT) model [12-15]. These parameters 
are the flexible Beta node parameters’ and the weights 
encoded in the best structure found by the Extended Genetic 
Programming (EGP) [12, 13]. The new model is applied for 
nonlinear identification and prediction systems. 

The paper is organized as follows: Section 2 describes the 
basic concepts of FBBFNT model. The PSOUM-IHS 
algorithm will be detailed in Section 3. A hybrid FBBFNT 
evolving algorithm, which combines EGP and PSOUM-IHS 
is the subject of Section 4. The set of some simulation 
results for nonlinear prediction and identification systems 
are provided in Section 5. Finally, some concluding remarks 
are presented in Section 6. 

II. FLEXIBLE BETA BASIS FUNCTION NEURAL TREE MODEL 

The initiative of using Beta function for designing 
Artificial Neural Network was introduced by Alimi [16]. 
This function has several advantages over the Gaussian 
function, such as its ability to generate more rich shapes 
(linearity, asymmetry, etc.) [17] and its great flexibility. 

In this work, the Beta basis function neural network is 
encoded by the tree-based encoding method instead of the 
matrix-based encoding method [18], since this method is 
more flexible and gives amore modifiable and adjustable 
structure. The new model is called Flexible Beta Basis 
Function Neural Tree (FBBFNT). The FBBFNT is formed 
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of a node set NS representing the union of function node set 
F and terminal node set T: ܰܵ = ܨ ڂ ܶ = ሼߚଶ, ,ଷߚ … , ,ேߚ  /ேሽ ,ଵݔሼڂ … ,  ெሽ    (1)ݔ

Where: 
• βn (n = 2, 3, …, N)denote non-terminal nodes and 

represent flexible Beta basis neurons with n inputs 
and N is the maximum degree of the tree. 

• /N is the root node and represents a linear transfer 
function. 

• x1, x2,. . ., xM are terminal nodes and define the input 
vector values.  

The output of a hidden function node is calculated as a 
flexible neuron model (Figure 1). 

 
Fig. 1. A flexible Beta Basis function. 

If a function node, i.e., ߚn is selected, n real values are 
randomly generated to represent the weight connected 
between the selected node and its offspring. In addition, the 
Beta function has four adjustable parameters (the center ܿ, 
the width ߪ and the form parameters ,  ) are randomlyݍ
generated as flexible Beta operator parameters. For each 
function node, its total excitation is calculated by: 

ݕ       =  ∑ ݓ כ ୀଵݔ                               (2) 

Where ݔ(j = 1, …, n) are the inputs of the selected node and ݓ( j = 1, …, n) are the weights.  
 
The output of node ߚn is then calculated by: 
ݐݑ  = ,ݕ)ߚ ܿ, ,ߪ , (ݍ = 

۔ە
ቂ1ۓ  (ା )(௬ି)ఙ ቃ ቂ1 − (ା )(ି௬)ఙ ቃ

ݕ݂݅ א ቃܿ − ఙା  , ܿ  ఙା ቂ0                                         ݈݁݁ݏ                  

                      (3) 

The output layer yields a vector by linear combination of 
the node outputs of the last hidden layer to produce the final 
output.  

A typical flexible Beta basis function neural tree model is 
shown in Figure 2. The overall output of flexible Beta basis 
function neural tree can be computed recursively by depth-
first method from left to right. 

 
 

Fig. 2. A typical representation of FBBFNT: function node set F = {β2, 
β3,β4,/5}, and terminal node set T = {x1, x2, x3, x4, x5, x6}. 

III. PSO-BASED UPDATE MEMORY FOR IMPROVED 
HARMONY SEARCH ALGORITHM: PSOUM-IHS 

The Harmony Search (HS) algorithm searches the 
solution area as a whole to find the optimum element, which 
optimizes the fitness function. The steps in the procedure of 
harmony search are as follows [1]: 

• Step 1: Problem formulation and parameter settings.  
• Step 2: Initialize randomly the harmony memory. 
• Step 3: Improvise a new harmony. 
• Step 4: Update the harmony memory. 
• Step 5: Checking stopping criterion  

When the HS algorithm generates a new element, it 
considers all of the existing elements in the harmony 
memory (population) with fewer mathematical requirements. 
This characteristic makes the HS more flexible, the 
implementation easier and it is very versatile to combine HS 
with other meta-heuristic algorithms such as Particle Swarm 
Optimization (PSO) algorithm [19]. 

Moreover, in order to improve the adjusting 
characteristic of HS algorithm, Mahdavi et al.[20] suggested 
evolving the parameters instead of being fixed during the 
iterations. In fact, the authors suggested that PAR (Pitch 
Adjustment Rate) increase linearly and FW (width of the fret 
or bandwidth) decrease exponentially with iterations. 
Therefore, mathematic expressions were adapted into these 
parameters to follow the iteration change: ܴܲܣ =  ோೌೣିோெ௫ூ௧ כ ݊݅ݐܽݎ݁ݐܫݐ݊݁ݎݎݑܿ  ܹܨ    (4)ܴܣܲ = ܨ ܹ௫ כ exp(݂ܿ݁ כ  (5)              (݊݅ݐܽݎ݁ݐܫݐ݊݁ݎݎݑܿ

݂݁ܿ     = ୪୭ (ಷೈಷೈೌೣ)NI      (6) 

Most of the decision variables in the new harmony are 
selected from the other elements stored in harmony memory. 
In addition, the new harmony vector may have the 
opportunity to take a place in the memory after his fitness 
test. Then, this vector might influence the convergence 
speed of the HS to the global optimum. We can note also 
that the harmony memory is stable in most of the time and 
does not provide a large variety of values to the 
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improvisation. Therefore, the HS has a lo
generating a good-quality of the new harm
these reasons, we have to incorporate a mec
a wide variety of values in memory while
allowable ranges by a hybrid mechanism 
mechanism implicitly guides the globa
converge to the optimal solution. The pro
(Figure 3) is called PSO-based update mem
Harmony Search (PSOUM-IHS)[21]. In fa
factors and the dynamic aspects of partic
guide the system to the right areas of 
workspace.  

To ameliorate the performance of HS, we
the hybridization on the Improved H
algorithm instead of the basic version. Ind
vectors of IHS are considered as particles o
the new memory values for new improvis
positions reached by these particles. The ve
is calculated for each particle i with the pos
to the following equation: ݒ(ݐ  1) = Ψ(ݐ)ݒ(ݐ)    ܿଵ߮ଵ((ݐ ܿଶ߮ଶ((ݐ) −  (7)((ݐ)ݔ

Where ܿଵ, ܿଶ (acceleration) and Ψ(iner
constant and ߮ଵand ߮ଶ are randomlydistri
[0,1]. In addition, pi corresponds to the be
current particles according to the best fitn
best position among all the particles obtai
population. Each particle changes its 
following equation: ݔ(ݐ  1) = (ݐ)ݔ   ൫1 − Ψ(ݐ)൯ݒ(ݐ 

Fig. 3. Flowchart of PSOUM-IH

In our case, an element of the memoSizematrix which corresponds to the op
structure optimization. The PSOUM-I
described as follows. 

ow probability of 
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e respecting their 
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al algorithm to 
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act, the stochastic 
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research in the 

e choose to apply 
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rtia) are positive 
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ness and pg is the 
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 1)             (8) 

S 

ory is NParam ൈ
ptimal tree ofthe 
IHS process is 

IV. THE HYBRID ALGORITHM FOR
MODEL 

Evolving FBBFNT includes t
architecture optimization and param
study, finding an optimal or a n
function neural tree architecture 
Extended Genetic Programming (EG

The EGP which is an extended 
genetic programming is formed by t

• Selection operator: is use
individuals from the populat
a new child by crossover/mu

• Crossover operator: is im
taking selected two sub-tree
then swapping them.  

• Mutation: four different m
used in the EGP to gene
parents. These mutation op
changing one terminal n
terminal nodes; growing; pru

The parameters implanted in a FB
the PSO-based update memory f
Search (PSOUM-IHS) algorithm as 

So, to find an optimal or near-o
structure and parameter optimizati
Combining of the EGP and PSO
hybrid algorithm for evolving FBB
as follows: 

 

 

R EVOLVING FBBFNT 

two issues which are 
meter adjustment. In this 
near optimal Beta basis 

is achieved by using 
GP) algorithm [12, 13]. 

version of the standard 
hree mainly operators:  
ed to select two parent 
tion in order to procreate 

utation operator.  

mplemented by randomly 
es in the individuals, and 

mutation operators were 
erate offspring from the 
perators are as follows: 

node; changing all the 
uning. 

BBFNT are optimized by 
for Improved Harmony 
described in section III.  

optimal FBBFNT model, 
ion are used alternately. 
OUM-IHS algorithms, a 
BFNT model is described 
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a) Randomly create an initial population (FBBFNT trees 
and its corresponding parameters); 

G = 0, where G is the generation number of the 
evolving algorithm; 
GlobalIter = 0, where GlobalIter is the global 
iteration number of the learning algorithm; 

b) Structure optimization is achieved by the Extended 
Genetic Programming (EGP) with structure fitness 
function Fitstru. ݐ݅ܨ௦௧௨(݅) = ߙ  ଵ݂(݅)  ߜ ଶ݂(݅)      (9) 
Where ଵ݂ measures the RMSE between the target and 
output of the proposed model. The function ଶ݂measures 
the complexity of the FBBFNT model. ߙ,  are user ߜ
specified fitness coefficients that allow a trade-off 
between the objectives,ߙ, ߜ א ሾ0,1ሿ. 

     ଵ݂(݅) = ටଵ ∑ ௧ݕ) − ௨௧ݕ )ଶୀଵ       (10) 

Where P is the number of samples,  ݕ௧ and ݕ௨௧  are the 
desired output and the FBBFNT output of jth sample. 

 
      ଶ݂(݅) = ௌ௭ିௌ௭ெାଵௌ௭ெ௫ିௌ௭ାଵ   (11) 

Where ܵ݅݅݁ݖ is the node number of the ith individual. The 
SizeMax and SizeMin are respectively the maximum and 
the minimum size of the tree. 

c) If a better structure is found or a maximum number of 
EIP iterations is attained, then go to step (d),  

GlobalIter = GlobalIter + EGP_Iter; 
       otherwise go to step (b); 
d) Parameter optimization is achieved by the PSOUM-IHS 

algorithm. The architecture of FBBFNT model is fixed, 
and it is the best tree found by the structure search. The 
parameters (weights and flexible Beta function 
parameters) encoded in the best tree formulate a 
harmony matrix. The parameter fitness function is equal 
to the function ݂1. 

e) If the maximum number of PSOUM-IHS iterations is 
attained, or no better parameter vector is found for a 
fixed time then go to step (f);  

GlobalIter = GlobalIter + PSOUM-IHS_Iter; 
otherwise go to step (d); 

f) If satisfactory solution is found or a maximum global 
iteration number is reached, then the algorithm is 
stopped; otherwise let (G = G +1) and go to step (b). 

V. EXPERIMENTAL RESULTS 
The FBBFNT model is applied to approximate the 

input/output map of nonlinear systems. Indeed, in order to 
prove the effectiveness of FBBFNT model, we compare its 
results with those provided by other learning methods in the 
literature. Before that the setting set of the FBBFNT is 
presented in the following Table 1.For all examples the 
illustrated results are obtained by averaging the results in 10 
runs. 

TABLE I.  THE FBBFNT’S SETTINGS 

Algorithm Parameter  Initial value 
 
 
 

EGP 

Population size 50 
Crossover probability 0.3 
Mutation probability 0.6 
Maximum generation number 1000 
Structure fitness settings 
,ߙ)   (ߜ

(0.95, 0.05) 

 
 
 
 

PSOUM-IHS 

Population size 50 
Maximum  iteration number 4000 
PARmin 0.00001 
PARmax  1.0 
HMCR 0.9 
c1 0.2 
c2 0.7 

 
 

Hybrid 
evolving 

algorithm 

Maximum global iteration 
number 

40 000 

Connected weights rand[0, 1] 
Beta center ܿ rand[min(x), max(x)] 
Beta spread ߪ rand[0, |max(x)-

min(x)|] 
Beta form parameters (,  rand[0, 5] (ݍ

A. Example  1: Mackey–Glass time series prediction 
A time-series prediction problem can be constructed 

based on the Mackey–Glass [22] differential equation: 

       ௗ௫(௧)ௗ௧ =  ௫(௧ିఛ)ଵା௫ౙ(௧ିఛ) −  (12)     (ݐ)ݔܾ

The settings of the experiment vary from one work to 
another. In our case, we take a = 0.2, b = 0.1, c = 10, and τ = 
17. These values are the same onesused by the comparison 
systems [12-15, 23-28].As in the studies mentioned above, 
the task is to predict the value of the time series at point ݐ)ݔ  6),with using the inputs variables (ݐ)ݔ, ݐ)ݔ  sample points are used in our 18.1000−ݐݔ12and−ݐݔ ,6−
study. The first 500 data pairs of the series are used as 
training data, while the remaining 500 are used to validate 
the model identified. 

The used Beta basis function sets to create an optimal 
FBBFNT model with EGP&PSOUM-IHS systemisܰܵ =ሼߚଶ, ଷ /ଷሽߚ ,ଵݔሼڂ ,ଶݔ ,ଷݔ ݐ)ݔ ,(ݐ)ݔ  (i = 1, 2, 3, 4) denotesݔ ସሽ, whereݔ − ݐ)ݔ ,(6 − 12), and ݐ)ݔ − 18), respectively. 

After 86 global generations (G = 86), 1,675,425 global 
number of function evaluations, and 23,206 global iterations 
of the hybrid learning algorithm, an optimal FBBFNT model 
was obtained with RMSE 4.8855e-13. The RMSE value for 
validation data set is 4.8876e-13. The evolved 
FBBFNT_EGP&PSOUM-IHS architecture is as shown in 
figure 4. The evolved FBBFNT_EGP&PSOUM-IHS output 
and the desired output are shown in figure 5. 

In addition, the memory footprint of the source code is of 
the order of 10,720 Kilo-bytes, knowing that the memory 
footprint of the input data is 40 Kilo-bytes. For the execution 
time is of the order of 2924 seconds. 
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Fig. 4. Evolved FBBFNT_EGP&PSOUM-IHS architecture for Mackey-

Glass time series prediction. 

 
Fig. 5. Evolving FBBFNT_EGP&PSOUM-IHS output and the desired 

output for Mackey-Glass time-series prediction. 

The FBBFNT_EIP&PSOUM-IHS model is essentially 
compared with the FBONT [12], FBBFNT_EGP&OPSO 
[13], FBBFNT_EIP&OPSO [14], and 
FBBFNT_EIP&HBFOA [15] with the same initial setting’s 
values. The comparison is mainly based on the prediction 
error (RMSE) / Number of Function Evaluations (NFEs) 
compromise. In fact, for FBONT model RMSE is equal to 
0.0076, NFEs is equal to 2,934,112 and for 
FBBFNT_EGP&OPSO, RMSE is equal to 0.0068, NFEs is 
equal to 1,966,825. Furthermore, for FBBFNT_EIP&OPSO 
model RMSE is equal to 0.0042, NFEs is equal to 1,616,648 
and for FBBFNT_EIP&HBFOA, RMSE is equal to 1.8630e-
09, NFEs = 6,004,148. It is clear that 
FBBFNT_EGP&PSOUM-IHS significantly reduces both the 
prediction error over the other four models and the number 
of function evaluations. 

The FBBFNT_EIP&PSOUM-IHS network is also 
compared with Hierarchical multi-dimensional differential 
evolution for the design of Beta basis function neural 
network (HMDDE-BBFNN) [23] and the FNT model with 
Gaussian function as flexible neuron operator [24] and also 
with other systems. The HMDDE-BBFNN approach adopts 
for parameters: 50 to the population size, 10,000 to a total 
number of iterations, and 4 to the number of the hidden 
nodes. Moreover, the parameter settings of the FNT system  
are 30 to the population size, 135 as generation number, and 
4 as hidden function unit number (with two hidden layers). 

A comparison result of different methods for forecasting 
Mackey-Glass data is shown in Table 2. As observed, the 

FBBFNT_EIP&PSOUM-IHS achieves the lowest testing 
and training error. 

TABLE II.  COMPARISON OF DIFFERENT METHODS FOR THE 
PREDICTION OF MACKEY-GLASS TIME-SERIES. 

Method  Training error 
(RMSE) 

Testing error 
(RMSE) 

HCMSPSO [26] 0.0095 0.0208 
Fuzzy&MRB [27] 0.000990  0.000884 
LNF[28] 0.0199 0.0322 
FNT [24] 0.0069 0.0071 
HMDDE–BBFNN [23] 0.0094 0.0170 
GA-BBFNN [25] - 0.013 
FBONT [12] 0.0074 0.0076 
FBBFNT_EGP&OPSO [13] 0.0061  0.0068  
FBBFNT_EIP&OPSO [14] 0.004194 0.004299 
FBBFNT_EIP&HBFOA[15] 5.3430e-10 1.8630e-09 
FBBFNT_EGP&PSOUM-IHS 4.8855e-13 4.8876e-13 

B. Example  2 : Box and Jenkins’ Gas Furnace Problem 
The gas furnace data of Box and Jenkins [29] was saved 

from a combustion process of a methane-air mixture. It is 
used as a benchmark example for testing prediction methods. 
The data set forms of 296 pairs of input-output 
measurements. The input (ݐ)ݑis the gas flow into the 
furnace and the output (ݐ)ݕis the CO2 concentration in outlet 
gas. The inputs for constructing FBBFNT model are ݐ)ݕ − 1), ݐ)ݑ − 4), and the output is (ݐ)ݕ. In this study, 200 
data samples are used for training and the remaining data 
samples are used for testing the performance of the proposed 
model. The used instruction set isܰܵ = ሼߚଶ/ଷሽ ,ଵݔሼڂ  ,ଶሽݔ
where ݔ (i = 1, 2) denotes  ݐ)ݕ − 1), ݐ)ݑ − 4), respectively.  

After 17 global generations (G = 27), 199,229 global 
number of function evaluations, and 4,564global iterations 
of the hybrid learning algorithm, an optimal FBBFNT model 
was obtained with RMSE 0.008135. The RMSE value for 
validation data set is 0.008773. In addition, the memory 
footprint of the source code is of the order of 2508 KB, 
knowing that the memory footprint of the input data is 7.008 
KB. For the execution time is of the order of 1021 seconds. 

The evolved FBBFNT_EGP&PSOUM-IHS architecture is 
as shown in Figure 6. Our method uses only three hidden 
function neurons for two hidden layers. The evolved 
FBBFNT_EGP&PSOUM-IHS output and the desired output 
are shown in Figure 7. 

 

 
Fig. 6. The evolved FBBFNT_EGP&PSOUM-IHS for prediction of the 

Jenkins–Box time-series  (y(t − 1), u(t − 4)). 
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Fig. 7. The actual time series data and the output of 
for training and test samples to forecast the Jenkins

(y(t − 1), u(t − 4)). 

A comparison result of different method
Jenkins-Box data is shown in Table 3. 

TABLE III.  COMPARISON OF TESTING ERRORS OF 

Method  Pre
e

(R
ANFIS model [30] 0.084
FNN_AP&PSO [31] 0.026
FuNN model [32] 0.071
FNT [24] 0.025
HMDDE -BBFNN[23] 0.241
FBBFNT_EGP& OPSO [13] 0.011
FBBFNT_EIP& OPSO [14] 0.009
FBBFNT_EIP& HBFOA [15] 0.009
FBBFNT_EGP&PSOUM-IHS 0.008

It is clear from the results of Tab
FBBFNT_EGP&PSOUM-IHS model g
prediction rate for the Jenkins-Box time-ser

C. Example 3:  Lorenz chaotic time serie

The Lorenz system is a model of fluid m
hot surface and a cool surface [33]. It is 
following nonlinear ordinary differential equ

             ቌݔሶ = ݕ)ߪ  − ሶݕ(ݔ = ݕ−  − ݖݔ  ሶݖݔݎ = ݕݔ  − ݖܾ     

In this example, the x-component in the 
is used as the time series. The data that des
attractor, were generated by solving 
differential equations, with σ= 10, r=50 and
were used as inputs to the neural networks. 
based on four past values(ݐ)ݔ − ݐ)ݔݐݔ and thus the output pattern is (1−ݐݔ ,2(4 − 2), ݐ)ݔ − 1)). 
From 1000 generated observations, the first
the series are used as the training set and
employed as test series. The used Beta basi
create an optimal FBBFNT model with EG
system is ܰܵ = ሼߚଶ/ଷሽ ,ଵݔሼڂ ,ଶݔ ,ଷݔ ସሽ, whݔ
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UD-SVM [34]  -  
MLP-EKF [36]  0.01
MLP-BLM [36]  0.01
RNN-BPTT [36]  0.02
RNN-RTRL [36]  0.02
RNN-EKF [36]  0.01
RBLM-RNN [36]  0.01
LNF [28]  0.00
ABC_BBFNN [35] -  
FBBFNT_EGP&PSOUM-IHS 2.50
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arison of the proposed 
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D. Example 4:  Nonlinear system identifi

In this example, the nonlinear system [29
is expressed by: ݕ(ݐ  1) =  ௬(௧)ሾ௬(௧ିଵ)ାଶሿሾ௬(௧)ାଶ.ହሿ଼.ହାሾ௬(௧)ሿమାሾ௬(௧ିଵ)ሿమ  ݑ
Where yp(t) is the output of the system at the
u(t) is the plant input which is uniformly
region [-2, 2]. The identification model is asݕ(ݐ  1) = ,(ݐ)ݕ)݂  ݐ)ݕ − 1))  (ݐ)ݑ
Where f(yp(t);yp(t-1)) is the nonlinear func
yp(t -1) that will be input of our model an
and yp(t +1) will be the output from the neur

In this example, 500 data samples are 
and 500 data samples are used for testing th
the evolved model. After the training is ove
prediction ability has been tested for the in
following: (ݐ)ݑ =  ൜ 2 cos(2100/ݐߨ) ݐ݂݅  200  1.2 sin(220/ݐߨ) ݂݅ 200 ൏ ݐ 

The used Beta basis function sets to c
FBBFNT model with EGP&PSOUM-Iܰܵ = ሼߚଶ/ଷሽ ,ଵݔሼڂ ଶሽ, where xi (i = 1, 2) dݔ
yp(t-1), respectively. 

After 10 global generations (G = 10)
number of function evaluations, and 5,469
of the hybrid learning algorithm, an optimal
was obtained with RMSE 1.0464e-12. The 
identification data set is 1.5441e-12. In addi
footprint of the source code is of the ord
knowing that the memory footprint of the
KB. For the execution time is of the order o

The evolved FBBFNT_EGP&PSOUM-IH
as shown in Figure 10. Our method uses 
function neurons for one hidden layer
FBBFNT_EGP&PSOUM-IHS output and t
are shown in Figure 11. A comparison re
methods for forecasting Lorenz data is 
5.Results show that applying the FBBFNT
IHS for the nonlinear plant identificatio
generalization error. 

Fig. 10. Evolved FBBFNT_EGP&PSOUM-IH
nonlinear plant identificatio

fication 

9] to be identified 

 (11) (ݐ)ݑ

e tth time step and 
y bounded in the 
s follows: 

              (12) 

ction of yp(t) and 
nd related works; 
ral models. 

used for training 
he performance of 
er, the identifier’s 
nput calculated as 

0 500(13) 

create an optimal 
IHS system is 
denotes, yp(t) and 

, 245,126 global 
9 global iterations 
l FBBFNT model 
 RMSE value for 
ition, the memory 
der of 9092 KB, 
 input data is 24 

of 2533 seconds. 

HS architecture is 
only two hidden 

rs. The evolved 
the desired output 
esult of different 
shown in Table 

T_EGP&PSOUM-
on improves the 

 
HS architecture for 
on. 

Fig. 11. Evolving FBBFNT_EGP&PSOU
output for nonlinear pl

TABLE V.  COMPARISON FBBFNT_EG
METHODS FOR NONLINEAR PLAN

 
 
 
 
 
 

Model  R
Tr

ODE [37]  0.019
HMDDE [23] 0.019
FBBFNT_EGP&PSOUM-IHS 1.046

 
 
 
 
 
 

VI. CONCLUS

In this paper, a new PSO-bas
Improved Harmony Search (PSO
introduced to evolve the paramete
Basis Function Neural Tree (FB
parameters include the parameters
nodes and connected weights. The P
combined with the Extended Ge
FBBFNT’s structure optimization.
successfully optimize simultaneous
parameters of the FBBFNT. The
FBBFNT_EGP&PSOUM-IHS me
predict nonlinear systems such as
time series, Jenkins–Box time seri
series, and nonlinear plant identifica
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