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Abstract—Vehicle Routing Problem (VRP) is a well known
NP-hard optimization problem with a number of real world
applications and a variety of different versions. Due to its
complexity, large instances of VRP are hard to solve using
exact methods. Instead, various heuristic and meta-heuristic
algorithms were used to find feasible VRP solutions. This work
proposes a Differential Evolution for VRP that simultaneously
looks for an optimal set of routes and minimizes the number of
vehicles needed. The algorithm is used to solve Stochastic VRP
with Real Simultaneous Pickup and Delivery based on real-
world data obtained from Anbessa City Bus Service Enterprise
(ACBSE), Addis Ababa, Ethiopia. Additionally, the algorithm
is evaluated on several well known VRP instances.
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I. INTRODUCTION

The problem of designing a minimum cost set of routes

to serve a collection of customers with a fleet of vehicles,

known as Vehicle Routing Problem, is an important chal-

lenge in the field of logistics, distribution and transporta-

tion [1], partly because transportation and distribution con-

tribute approximately 20% to the total costs of a product [2].

VRP was originally defined by Dantzig et al. [3] under

the title ”Truck dispatching problem” with the objective

to design optimum routing of a fleet of gasoline delivery

trucks between a bulk terminal and a large number of service

stations supplied by the terminal.

This work proposes and evaluates a new version of

Differential Evolution for the VRP. The algorithm uses

permutation as a model of a set of routes and random keys

encoding as a representation of the permutation. Such a

representation is suitable for real parameter optimization

methods such as the Differential Evolution (DE). The al-

gorithm is evaluated on a new VRP model with stochastic

pickup and delivery based on real-world data describing bus

services in Anbessa City Bus Service Enterprise (ACBSE),

Addis Ababa, Ethiopia. The model, first proposed in [4],

is called Stochastic VRP with Real Simultaneous Pickup

and Delivery (SVRPSPD). Additionally, several well-known

instances of VRP are solved by the proposed algorithm in

order to asses the quality of solutions found by the DE.

II. VEHICLE ROUTING PROBLEM

The VRP can be formulated in terms of graph theory.

The basic VRP is defined as: let G = (Vn, A) be a directed

or asymmetric graph where Vn = {v0, ...vn} is a set of

vertices representing cities or bus stops with depot located

at vertex v0, and A is the set of arcs. With every arc

(i, j) ∈ A, i 6= j is associated a non-negative weight cij .

The set of weights associated with all arcs can be expressed

by a distance matrix C = (cij). In certain context, cij can be

interpreted as a travel cost or as a travel time [5]. When C

is symmetrical, it is often convenient to replace A by a set

of undirected edges E and reformulate the problem using

symmetric undirected graph. In many practical cases, the

cost or the distance matrix satisfies the triangular inequality

such that cik + ckj ≥ cij , ∀i,j,k ∈ V [6]. The general or

classical VRP consists of designing a set of at most K

delivery or collection routes such that each route starts and

ends at the depot, each customer is visited exactly once by

exactly one vehicle, the total demand of each route does

not exceed the vehicle capacity and the total routing cost is

minimized [6].

Because of the complexity and practical relevance of

the VRP, significant research effort has been dedicated to

the Bus Scheduling Problem (BSP) and its other variants

and many optimization models have been proposed [7].

Many models have focused on obtaining near optimal VRP

solutions at reasonable computational costs. [1]. Various

extensions for the Vehicle Schedule Problem (VSP) or VRP

with different additional requirements were also investigated

in the last fifty years [6]. Among others, VRP with one de-

pot [8] or more than one depot [9], VRP with heterogeneous

fleet with multiple vehicle types [8], VRP with variable trip

departure times, VRP with Stochastic Demand [1], [10],

[11], and VRP with incapacitated vehicles [12], [11] were

considered.

III. DIFFERENTIAL EVOLUTION

The DE is a versatile and easy to use stochastic evolu-

tionary optimization algorithm [13]. It is a population-based

optimizer that evolves a population of real encoded vectors



representing the solutions to given problem. The DE was

introduced by Storn and Price in 1995 [14], [15] and it

quickly became a popular alternative to the more traditional

types of evolutionary algorithms. It evolves a population of

candidate solutions by iterative modification of candidate

solutions by the application of the differential mutation and

crossover [13].

The DE starts with an initial population of N real-valued

vectors. The vectors are initialized with real values either

randomly or so, that they are evenly spread over the problem

space. The latter initialization leads to better results of the

optimization [13].

During the optimization, the DE generates new vectors

that are scaled perturbations of existing population vectors.

The algorithm perturbs selected base vectors with the scaled

difference of two (or more) other population vectors in order

to produce the trial vectors. The trial vectors compete with

members of the current population with the same index

called the target vectors. If a trial vector represents a better

solution than the corresponding target vector, it takes its

place in the population [13].

There are two most significant parameters of the DE [13].

The scaling factor F ∈ [0,∞] controls the rate at which the

population evolves and the crossover probability C ∈ [0, 1]
determines the ratio of bits that are transferred to the trial

vector from its opponent. The size of the population and the

choice of operators are another important parameters of the

optimization process.

The basic operations of the classic DE can be summarized

using the following formulas [13]: the random initialization

of the ith vector with N parameters is defined by

xi[j] = rand(bLj , b
U
j ), j ∈ {0, . . . , N − 1} (1)

where bLj is the lower bound of jth parameter, bUj is the

upper bound of jth parameter and rand(a, b) is a function

generating a random number from the range [a, b]. A simple

form of the differential mutation is given by

vti = vr1 + F (vr2 − vr3) (2)

where F is the scaling factor and vr1, vr2 and vr3 are three

random vectors from the population. The vector vr1 is the

base vector, vr2 and vr3 are the difference vectors, and the

ith vector in the population is the target vector. It is required

that i 6= r1 6= r2 6= r3. The uniform crossover that combines

the target vector with the trial vector is given by

l = rand(0, N − 1) (3)

vti [m] =

{

vti [m] if (rand(0, 1) < C) or m = l

xi[m]
(4)

for each m ∈ {1, . . . , N}. The uniform crossover replaces

with probability 1−C the parameters in vti by the parameters

from the target vector xi.

There are also many other modifications to the classic DE.

Mostly, they differ in the implementation of particular DE

steps such as the initialization strategy, the vector selection,

the type of differential mutation, the recombination operator,

and control parameter selection and usage [13].

A. Recent Applications of DE to the VRP

Large VRP instances cannot be practically solved by exact

methods due to the NP-hardness of the problem. Instead, var-

ious heuristic and meta-heuristic algorithms were employed

to find approximate VRP solutions in reasonable time [16],

[17]. A categorized bibliography of different meta-heuristic

methods applied to different VRP variants can be found

in [17]. The DE has proved to be an excellent method for

both, continuous and discrete optimization problems. This

section provides a short overview of recent applications of

the DE to different variants of VRP in 2013 and 2012.

Hou and Hou [18] and Hou et al. [19] used in 2013

and 2012 a new discrete differential evolution algorithm

for stochastic vehicle routing problems with simultaneous

pickups and deliveries. The algorithm used natural (integer)

encoding with the symbol 0 as sub-route separator and fit-

ness function incorporating routing objective and constraints.

Besides the traditional DE operators, new bitwise mutation

was proposed. The algorithm also utilized an additional

revise operator to eliminate illegal chromosomes that might

have been created during the evolution. The experiments

conducted by the authors have shown that the proposed

algorithm delivers better solutions and converges faster than

other DE-based and GA-based VRP solvers.

Küçükoǧlu and Öztürk [20] used a variant of DE to find

solutions to VRP with backhauls and time windows. The

problem was formulated using mixed integer programming,

solved by the DE and tested on several benchmarks. A short

comparison of four discrete DE algorithms on capacitated

VRP was presented in [21].

Liu et al. [22] used in 2012 a memetic differential evolu-

tion algorithm to solve vehicle routing problem with time

windows. The algorithm used a real-valued source space

and discrete solution space. A source vector was translated

into an solution vector by modifications of the source vector

(e.g. insertion of sub-route separator ’0’ in feasible locations)

and optimized by three local search algorithms. The fitness

of the best routing found by the local searches was called

generalized fitness of the source vector. The experiments

performed by the authors have shown that the proposed

modifications improve the quality of solutions found by the

DE and that the new algorithm is especially suitable for

solving VRP instances with clustered locations.

Xu and Wen [23] used differential evolution for unidi-

rectional logistics distribution vehicle routing problem with

no time windows. The authors approached the task as

an multi-objective optimization problem (although none of

the traditional multi-objective DE variants was used) and



established an encoding scheme that mapped the real-valued

candidate vector to a routing of k vehicles.

IV. DIFFERENTIAL EVOLUTION FOR VEHICLE ROUTING

PROBLEM

The VRP can be seen as a combinatorial optimization

problem. The goal of the optimization is to find a set of

routes connecting selected locations (bus stops, customers)

so that each location is visited by a vehicle exactly once,

each route starts and terminates in a special location (depot),

considered constraints are satisfied, and selected objective

function is minimized. In this work we represent a set of

routes as a permutation of considered locations (without the

depot) and separate each sub-route by a special sub-route

separator similarly as e.g. in [16].

The DE proposed in this work uses permutation-based

VRP representation, automatically optimizes the number of

vehicles when an upper bound is given, and avoids the

creation of illegal candidate solutions.

A. Encoding

There is a variety of possible encoding schemes for

modelling permutations for populational meta-heuristic al-

gorithms [24]. The DE uses real-encoded candidate solutions

so a modified version of the random key (RK) encoding [25]

was chosen. An RK encoded permutation is represented as

a string of real numbers (random keys), whose position

changes after sorting correspond to the permutation gene.

The advantage of RK encoding is that it is at a large

extent prone to creation of illegal solutions in course of the

artificial evolution (e.g. by the crossover operator in Genetic

Algorithms). The drawbacks of the RK encoding include

computational complexity as it is necessary to perform a

sorting of the random keys every time the candidate solution

is decoded. The RK encoding translates a discrete combina-

torial optimization problem into a real-valued optimization

problem with a larger continuous search space.

The routing of a maximum of k buses for n

locations (without the depot) is encoded as x =
(x1, x2, . . . xk+n−1), xi ∈ R. Routing R is from the en-

coded vector x created according to Algorithm 1. During the

decoding process, k−1 largest values of x are interpreted as

route separators. The remaining values are used as random

keys and translated into permutation of n locations π. The

values of π are split into k routes, each of which starts in

the depot and terminates in the depot. Empty routes can

be created when the vector x contains two or more route

separators next to each other. The set of non-empty routes

defines the routing R.

B. Fitness function

Fitness functions used in this work are based on covered

distance, number of routes, and penalty for bus capacity

1 Sort candidate vector: xs = sort(x);

2 Use the k − 1 largest values of x as route separators: xsep = xs
n−1

;

3 Create key vector k and vector with route sizes s:

4 route size = 0;

5 for i ∈ {0, . . . , k + n − 1} do

6 if xi > xsep then

7 Append route size to s;

8 route size = 0;

9 else

10 Append xi to k;

11 route size = route size + 1;

12 end

13 end

14 Translate key vector k to permutation π;

15 index = 0;

16 for i ∈ {0, . . . , k} do

17 if si > 0 then

18 for j ∈ {0, . . . , si} do

19 Append location πindex to route i;

20 index = index + 1;

21 end

22 Add i to routing R;

23 end

24 end

Algorithm 1: Decoding of routing R

violation. Two variants of fitness function were considered:

fit1(R) =

∑

r∈R dist(r)

|R|
(5)

fit2(R) =
(

∑

r∈R

dist(r)
)

|R| (6)

where dist(r) is the distance of route r and |R| represents

the number of routes in R. A penalty was applied (route

distance was artificially increased) when the capacity of the

bus was depleted.

V. EXPERIMENTAL EVALUATION

The DE was used to find solutions for different types of

VRP instances. Moreover, the two fitness functions consid-

ered for the DE were evaluated and compared.

A. Test Data

The proposed DE was evaluated on a single instance of

the Stochastic VRP with Real Simultaneous Pickup and

Delivery based on the ANBESA data and on a set of VRP

instances from the VRPH benchmark library [26].

1) SVRPSPD: The SVRPSPD model was first introduced

in [4]. It considers simultaneous pickup and delivery at each

bus stop. The pickup and delivery demand at each bus stop

is treated as stochastic and random. The model also assumes

that:

• The number of passengers to be picked up and dropped

is random following a poisson probability distribution.

• The cumulative number of passengers picked up along

the route must not exceed vehicle capacity Q.

• The fleet consists of homogeneous vehicles with limited

capacity operating from a single depot.



• Each vehicle can be used repeatedly within the planning

horizon.

A VRP solution is considered feasible when the vehicles

included in the solution served all the demand (for pick

up and drop off) at each node along their paths without

exceeding their capacity and violating additional constraints.

The objective is to find a solution such that both the total

traveled distance and the number of vehicles are minimized.

2) Capacitated VRP instances: In order to verify the

proposed algorithm on a public set of VRP instances with

known optimal solutions, the set of capacitated VRP (CVRP)

instances (set A) by Augerat et al. [27] were downloaded

from the VRPH website1 and solved by the DE. The data

set consists of 27 VRP instances with different number of

stops ranging from 32 to 80, fixed vehicle capacity, known

optimum number of vehicles, and known best solution.

B. VRP experiments

The DE was implemented in C++ and used to optimize

routings of the ACBSE company and capacitated VRP

instances from the VRPH website.

1) SVRPSPD experiments and results: The DE was ex-

ecuted with population size 100, maximum number of 20

vehicles, bus capacity of 70, 1000 generations, and param-

eters F = 0.9 and C = 0.4. The parameter values were

set on the basis of initial experiments and algorithm tuning.

The optimization was repeated 30 times due to the stochastic

nature of the algorithm. Fitness function fit1(R) was used.

The results of the optimization were: average number of

routes 5.433, minimum number of routes 5 and maximum

number of routes 7. The fitness values in each generation

of the 30 independent runs of the algorithm are shown

in fig. 1. The results show that the algorithm is stable and
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Figure 1: The evolution of fit1(R) on SVRPSPD model.

able to reduce the estimated number of vehicles significantly.

Moreover, the solutions found by the DE algorithm are better

(in terms of used fitness function) than those found by a

traditional savings algorithm by Clarke and Wrigth [28].

1https://sites.google.com/site/vrphlibrary/

2) Capacitated VRP experiments and results: The DE

was executed with population size equal to dimension · 5,

maximum number of vehicles·2 vehicles, 25000 generations

, and parameters F = 0.05 and C = 1e− 6. The parameter

values were again set on the basis of initial experiments

and the optimization was repeated 30 times. The results are

shown in table I and a visual example of solutions of CVRP

instances is provided in fig. 2. The visualisation was done

using the vrp plot tool by Groër et al. [26].

It can be seen that the errors of solutions found after

25000 generations by the DE with fitness function fit1(R)
were between 37.8 and 87.7%. The errors of solutions

obtained by DE with fitness function fit2(R) were between

21.3 and 68.7%. The latter fitness function was also more

successful in reducing the number of vehicles. The evolution

was at 25000th generation still ongoing and the quality of

the solutions was improving.

VI. CONCLUSIONS

This work proposed a DE for VRP and tested it on a

recent VRP model (SVRPSPD) and well known set of CVRP

instances. The DE encoded set of tours as a permutation

and minimized the number of vehicles from an initial

upper estimate. In contrast to a number of previous meta-

heuristic algorithms, all solutions generated by the proposed

algorithm were valid routings and computational resources

were not wasted on processing of invalid solutions.

The solution found by the algorithm for the SVRPSPD

model was compared to a solution obtained by a traditional

savings algorithm and it was found better with regard to

used fitness function. The CVRP solutions obtained by the

DE yielded quite large error when compared to known

optimal solutions. On the other hand, the algorithm did not

use any kind of local search or heuristic information in

order to improve the results. Moreover, the computation was

terminated before the DE converged and the results were still

improving. The parameters of the DE algorithm could be

also optimized to improve the results. Two fitness functions

were tested and the second one, defined by eq. (6), was

found better in terms of covered distance and number of

vehicles of the solutions.

The results presented in this study are promising and

meta-heuristic VRP solvers with various permutation-based

representations of candidate solutions [24] will be investi-

gated in the future.
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Instance Best solution fit1(R) fit1(R) fit1 error [%] fit2 error [%]

A-n32-k5 784 1174.28 1028.11 49.78061224 31.13647959
A-n33-k5 661 910.89 837.362 37.80484115 26.68108926
A-n33-k6 742 1122.98 967.589 51.34501348 30.40283019
A-n34-k5 778 1120.68 998.161 44.04627249 28.29832905
A-n36-k5 799 1148.12 1079.77 43.69461827 35.14017522
A-n37-k5 669 1029.86 827.366 53.94020927 23.67204783
A-n37-k6 949 1404.64 1174.25 48.01264489 23.73551106
A-n38-k5 730 1135.72 920.877 55.57808219 26.14753425
A-n39-k5 822 1176.2 1068.66 43.09002433 30.00729927
A-n39-k6 831 1252.35 1237.46 50.70397112 48.91215403
A-n44-k6 937 1375.59 1136.3 46.80789755 21.27001067
A-n45-k6 944 1488.9 1306.95 57.72245763 38.44809322
A-n45-k7 1146 1804.11 1523.22 57.42670157 32.91623037
A-n46-k7 914 1538.43 1316.36 68.31838074 44.02188184
A-n48-k7 1073 1609.48 1326.97 49.99813607 23.66915191
A-n53-k7 1010 1667.92 1512.07 65.14059406 49.70990099
A-n54-k7 1167 1822.56 1601.41 56.1748072 37.22450728
A-n55-k9 1073 1799.49 1872.8 67.70643057 74.53867661
A-n60-k9 1354 2099.25 2076.5 55.04062038 53.36041359
A-n61-k9 1034 1695.63 1491.32 63.98742747 44.22823985
A-n62-k8 1288 2144.33 2025.06 66.48524845 57.22515528
A-n63-k10 1314 2114.7 2052.45 60.93607306 56.19863014
A-n63-k9 1616 2698.48 2324.38 66.98514851 43.83539604
A-n64-k9 1401 2243.46 2082.62 60.13276231 48.65239115
A-n65-k9 1174 2198.69 1980.33 87.28194208 68.68228279
A-n69-k9 1159 2025.44 1868.91 74.75754961 61.25194133
A-n80-k10 1763 3308.55 2772.27 87.66591038 57.24730573

Table I: Capacitated VRP solutions obtained by the DE.
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Figure 2: Visualization of A-n32-k5 and A-n80-k10 solutions.
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SP2013/70, VŠB - Tech. Univ. of Ostrava, Czech Republic.

REFERENCES

[1] J. Christopher, Goodson, “Solutions methodologies for vrp
with stochastic demand,” Dessirtation, Iowa, 2010.



[2] M. Reimann, K. Doerner, and R. Hartl, “D-ants: Savings
based ants divide and conquer the vehicle routing problem,”
Computers & Operations Research, vol. 31, no. 4, pp. 563–
591, 2003.

[3] B. Dantzig, Gilbert and H. Ramser, J., “The truck dispatch-
ing problem,” Journal of Management Science, Management
Science, vol. 6, no. 1, pp. 80–91, 1959.
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