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Abstract—In this paper, a tree-based encoding method is introduced to represent the Beta basis 

function neural network. The proposed model called Flexible Beta Basis Function Neural Tree 

(FBBFNT) can be created and optimized based on the predefined Beta operator sets. A hybrid 

learning algorithm is used to evolving FBBFNT Model: the structure is developed using the Extended 

Genetic Programming (EGP) and the Beta parameters and connected weights are optimized by the 

Opposite-based Particle Swarm Optimization algorithm (OPSO). The performance of the proposed 

method is evaluated for benchmark problems drawn from control system and time series prediction 

area and is compared with those of related methods. 
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1. Introduction 

   The initiative of using Beta basis functions for designing Artificial Neural Network was introduced 
by Alimi in 1997 [21] and in this case the network is called Beta Basis Function Neural Network 
(BBFNN). The BBFNN is a three layer feed-forward neural network that generally adopts a linear 
transfer function for the output layer and a beta basis function as a non linear transfer function for the 
hidden units. The beta basis function has several advantages over the Gaussian function, such as its 
ability to generate more rich shapes (asymmetry, linearity, etc.) [20] and its great flexibility. Therefore 
several success researches have been achieved in the use of the BBFNN for classification (pattern 
recognition) [34-36], prediction [1-4], etc. The BBFNN has also the opportunities for an application to 
constraint optimization problems [10]. 

A BBF neural network‘s performance depends mainly on two issues which are the network structure 
and the Beta parameter‘s adjustment. For a given problem, a BBFNN structure is not unique and there 
can exist different ways to create a corresponded structure. Thus, the design of BBFNN automatically 
is required.  Furthermore, connected weights and Beta parameters which include the center, width and 
form parameters of BBFNNs can be learned by many methods, i.e., back-propagation algorithm [35], 
genetic algorithm [10, 11, 12], differential evolution algorithm [1, 3, 4], particle swarm optimization 
algorithm [2] and so on. In addition, many important attempts have been developed to optimize both 
structure and parameters of the BBFNN such as Hierarchical Genetic Algorithm (HGA) [10] and 
Hierarchical Multi-dimensional Differential Evolution (HMDDE) [33].  

mailto:souhir.bouaziz@ieee.org


Although conventional representation of BBFNN has a number of advantages such as better 
approximation capabilities and simple network topologies, however adapting the matrix-representation 
suffers from slow premature convergence characteristics and makes the BBFNN‘s structure difficult to 
regulate. These reasons encourage us to use the tree-based encoding method which was introduced by 
Chen [13-19, 22], for representing a BBF neural network and so the new representation is called 
Flexible Beta Basis Function Neural Tree (FBBFNT). This model is more flexible than the classical 
BBFNN seen that it can find automatically the number of nodes as well as the number of hidden layers. 

In this paper, the FBBFNT model is applied to benchmark problems drawn from control system and 
time series prediction area. Based on the predefined Beta operator sets, a flexible Beta basis function 
neural tree model can be created and evolved. The hierarchical structure is evolved using the Extended 
Genetic Programming (EGP). The fine tuning of the Beta parameters (centre, spread and the form 
parameters) and weights encoded in the structure is accomplished using the Opposite-based Particle 
Swarm Optimization algorithm (OPSO).  

The remainder of this paper is organized as follows: Section 2 describes the basic flexible Beta basis 

function neural tree. A hybrid learning algorithm for evolving the Beta function neural tree model is the 

subject of section 3. The set of some simulation results are provided in section 4. Finally, some 

concluding remarks are presented in section 5. 

2. Flexible Beta Basis Function Neural Tree model 

   The Beta function is the name used by Legendre and Whittaker and Watson (1990) for the Beta 

integral (also called the Eulerian integral of the first kind). The first time where the Beta function was 

used as transfer function for neural networks was in 1997 by Alimi [21]. 

This function was chosen as a transfer function for many reasons [40- 43], including, its large 

flexibility (Fig.1), its universal approximation characteristics [11, 12] and its ability to generate rich 

shapes (asymmetry, linearity, etc.) [20].  

The Beta basis function is defined by: 
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Where p > 0, q > 0 , x0, x1  are the real parameters, x0 < x1  and c =  
p x1+q x0

p+ q
 is the center of beta 

function. 

Let 𝜎 =  𝑥1 − 𝑥0, 𝜎 is the width of the beta function which can be seen as a scale factor for the distance 
 𝑥 − 𝑐 . So: 
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Some proprieties taken from [40] in the one-dimensional case are presented as following:  

 𝛽 𝑥0 =  𝛽 𝑥1  = 0, (4) 

 𝛽 𝑥𝑐 = 1, (5) 
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If p=1, q=0: 𝛽 𝑥 =   
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So, Beta function may be considered as a piecewise linear function of x, if (p=1, q=0) or (p=0, q=1). 

For the multi-dimensional case, the Beta function has the some proprieties as the one-dimensional 

because the multi-dimensional Beta function is simply the product of m one-dimensional Beta 

functions. 

In addition, for any given Gaussian function Gauss(x,,) and for any given precision , there exists a 

Beta function 𝛽 𝑥, 𝑥0, 𝑥1 , 𝑝, 𝑞  that approximates the Gaussian function with an error of less than  for 

any xϵℝ. 

 

 

Fig. 1. Examples of Beta Basis Function. 

In this study, we have adopted a tree-based encoding for representing the Beta basis function neural 

network instead of the matrix-based encoding as it is more flexible and gives a more modifiable and 

adjustable structure.  

The FBBFNT is formed of a node set S representing the union of function node set F and terminal 

node set T: 

𝑆 = 𝐹  𝑇 =  +2, +3 ,… , +𝑁 ,  /N    𝑥1 ,… , 𝑥𝑀   (10) 

Where: 

 +n (n = 2, 3, …, N) denote non-terminal nodes and represent flexible Beta basis functions with n 

inputs and N is the maximum degree of the tree. 

 /N  is the root node and represent a linear transfer function. 

 x1, x2,. . ., xM are terminal nodes and defining the input vector values.  

 

The output of a non-terminal node is calculated as a flexible neuron model (see Fig.2). 

 

 

Fig. 2. A flexible neuron Beta operator. 



In the creation process of Beta basis function neural tree, if a function node, i.e., +n is selected, n real 
values are randomly created to represent the connected weight between the selected node and its 
offspring. In addition, seen that the flexible activation function used for the hidden layer nodes is the 
beta function (3), four adjustable parameters (the center  cn , width σn  and the form parameters 
pn , qn ) are randomly generated as flexible Beta operator parameters.  
For each non-terminal node, its total excitation is calculated by: 

𝑦𝑛 =   𝑤𝑗 ∗  𝑥𝑗
𝑛
𝑗=1   (11) 

Where  𝑥𝑗 ( j = 1, …, n) are the inputs of the selected node and 𝑤𝑗  ( j = 1, …, n) are the connected 

weights.  

The output of node +n is then calculated using (3) by: 
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The output layer yields a vector by linear combination of the node outputs of the last hidden layer to 

produce the final output.  

A typical flexible Beta basis function neural tree model is shown as Fig.3. The overall output of 

flexible Beta basis function neural tree can be computed recursively by depth-first method from left to 

right. 

 

Fig. 3. A typical representation of FBBFNT: function node set F = {+2, +3, +4, /4}, and terminal node set                             

T = {x1, x2, x3, x4}. 

3. The hybrid FBBFNT evolving algorithm 

The optimization of FBBFNT includes the tree-structure and parameter optimization. In this study, 

finding an optimal Beta basis function neural tree structure is achieved by using Extended Genetic 

Programming algorithm and the parameters implanted in a FBBFNT are optimized by Opposite-based 

PSO. 

3.1. Structure Optimization 

    The first step of the structure optimization is to create an initial population of flexible Bata basis 

function trees with random structures; i.e. uniformly distributed random number of layers in [0, 

NL_Max] and uniformly distributed random number of nodes for each layer in [0, NN_Max], where 

NL_Max (the maximum layer number) and NN_Max (the maximum node number) are chosen 

depending on the studied problem. The node parameters (Beta parameters and connected weights with 

the offspring nodes) of each tree are also randomly generated in its search spaces. Each individual is 

then evaluated according to the fitness function (section 3.4).  



    In the second time, some neural tree variation operators, which are an extension of standard GP, are 

applied to the population individuals as following in order to generate a new generation: 

Selection: The selection operator is used to select two parents from the population in order to procreate 

a new child by crossover or mutation operator. In this study firstly a truncation selection is used by 

ranking all individuals according to their fitness. Then, a threshold T (between 0 and 1) is applied such 

that the (1-T)% best individuals are selected to survive to the next generation and the remaining 

individuals are removed and replaced with new ones. Individuals used for the replacement (crossover 

or mutation) are selected by the binary tournament selection. For each individual, two opponents are 

randomly chosen from all the parents and offspring. For each comparison, if the fitness of individual 

exceeds that of the opponent, it receives a selection. 

Crossover: In EGP, the tree structure crossover operation is implemented by taking randomly selected 

two sub-trees in the individuals and selecting randomly one non-leaf node in the hidden layer for each 

chromosome, and then swapping the selected sub-trees. An example of crossover operator is shown in 

Fig.4. 

 

Fig. 4. Examples of the EGP crossover operator: (a) Selected tree 1. (b) Selected tree 2. (c) Tree 1 after crossover 

operator with tree 2. (d) Tree 2 after crossover operator with tree 2. 

Mutation: four different mutation operators were used to generate offspring from the parents (Fig.5). 

These mutation operators are as follows: 

1. Changing one leaf node: select one leaf node randomly in the neural Beta basis function tree and 

replace it with another leaf node;  

2. Changing all the leaf nodes: select each leaf nodes in the neural Beta basis function tree and replace 

it with another leaf node;  

3. Growing: select a random leaf node in hidden layer of the neural Beta basis function tree and 

replace it with a randomly generated sub-tree;  



4. Pruning: randomly select a Beta operator node in the neural tree and replace it with a random leaf 

node. 

 

Fig. 5. Examples of the four EGP mutation operators: (a) Original tree. (b) Changing one leaf node. (c) Changing 

all the leaf nodes. (d) Growing. (e) Pruning. 

Following the work of Chellapilla [23], the EGP tree mutation operators were applied to each of the 

parents to generate an offspring using the following steps: 

(a) Define a number M which represents a sample from a Poisson random variable. 

(b) Select randomly M mutation operators from above four mutation operator set. 

(c) Apply these M mutation operators in sequence one after the other to the parent to create the 

offspring. 

After each mutation or crossover operator, a redundant terminals pruning operator will be applied, if 

it is possible; i.e. if a Beta operator node has more than two terminals, the redundant terminals should 

be deleted. 

Each individual of the new generation which is generated after the variation operators cited above, is 

evaluated using the fitness function (section 3.4). If this generation is better than the previous one, the 

population is updated. This procedure can be repeated until the terminal criteria are achieved; i.e., a 

better structure is found or a limit number of EGP iterations is reached. 

3.2. The Particle Swarm Optimization algorithm 

PSO was proposed by Kennedy and Eberhart [25] and is inspired by the swarming behavior of 

animals. The initial population of particles is randomly generated. Each particle has a position vector 

denoted by xi. A swarm of particles ‗flies‘ through the search space; with the velocity vector vi of each 

particle. At each time step, a fitness function is calculated by using xi. Each particle records its best 



position corresponding to the best fitness, which has done so far, in a vector pi. Moreover, the best 

position among all the particles obtained in a certain neighborhood of a particle is recorded in a vector 

pg. At each iteration t, using pi(t) and pg(t), a new velocity for particle i is updated by : 

𝑣𝑖 𝑡 + 1 =   (𝑡) 𝑣𝑖 𝑡 + 𝑐1𝜑1 𝑝𝑖 𝑡 − 𝑥𝑖 𝑡    +  𝑐2𝜑2  𝑝𝑔 𝑡 − 𝑥𝑖 𝑡    (13) 

where 𝑐1,𝑐2 (acceleration) and  (inertia) are positive constant and 𝜑1 and 𝜑2 are randomly distributed 
number in [0,1]. The velocity vi is limited in [-vmax ,+vmax]. Based on the calculated velocities, each 
particle changes its position as the following equation: 

𝑥𝑖 𝑡 + 1 = 𝑥𝑖 𝑡 +  1 − (t) 𝑣𝑖 𝑡 + 1  (14) 

3.3. The Opposite-Based particle swarm optimization for parameter optimization 

The use of heuristic operators or the update of the position in the PSO algorithm can mislead the 
finding of best particle by heading it towards a bad solution. Consequently, the convergence to the 
desired value becomes very expensive. To avoid these drawbacks, research dichotomy is adapted to 
improve the generalization performance and accelerate the convergence rate. Thus the reduction of the 
convergence time of the beta neural system is done by dividing the search space in two subspaces and a 
concept of the opposite number can be used to look for the guess solution between the two search 
subspaces. This concept can be integrated in the basic PSO algorithm to form a new algorithm called 
Opposite-based Particle Swarm Optimization (OPSO).  

In this study, a particle consists of the Beta parameters (centre, spread and the form parameters) and 
weights encoded in each flexible Beta basis function neural tree, which will be optimized by OPSO 
algorithm. 

The learning process of OPSO is described as follows: 

 
Step 0 (Initialization): At iteration t = 0, the initial positions xi(t = 0) (i = 1, …, NP) which are NParam 
× NN matrix, are generated uniformly distributed randomly; 

𝑥𝑖(0) =  𝑎𝑗 +  𝑟𝑎𝑛𝑑𝑖(𝑏𝑗 − 𝑎𝑗 )  (15) 

Where: 

 NP is the number of particles, 

 NParm is the number of parameters (Beta parameters and weights), 

 NN is the number of FBBFNT nodes, 

 [aj, bj] is the search space of each parameter. 

Generate the opposite population as follows: 

𝑥 𝑖(0) =  
𝛼𝑖  𝑥𝑖 0 +

𝑎𝑗+𝑏𝑗

2
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𝑎𝑗+𝑏𝑗

2

𝛼𝑖  𝑥𝑖 0 −
𝑎𝑗+𝑏𝑗

2
 , 𝑖𝑓 𝑥𝑖(0) >

𝑎𝑗+𝑏𝑗

2

 ,    𝛼𝑖 ∈  0, 1                                      (16) 

The initial velocities, vi(0), i = 1, . . . , NP , of all particles are randomly generated.  

Step 1 (Particle evaluation): Evaluate the performance of each particle in the population according to the 
beta neural system using a fitness function described in the next section.  

Step 2 (Velocity update): At iteration t, the velocity vi of each particle i is updated using pi(t) and pg(t). 
Here, the mutation operator is adopted according to (13).  

Step 3 (Position update): Depending on their velocities, each particle changes its position and its 
opposite- position according to the equation (14): 

𝑥𝑖(𝑡 + 1) =  𝑥𝑖(𝑡) +  1 −  t   𝑣𝑖 𝑡 + 1           (17) 

𝑥 𝑖 𝑡 + 1 =  𝑥 𝑖 𝑡 +  1 −  t   𝑣𝑖 𝑡 + 1     (18) 

Step 4 (pi and pg update): After traveling the whole population and changing the individual positions, 
the values of pi(t) and pg(t) obtained so far are updated. 

Step 5 (End criterion): The OPSO learning process ends when a predefined criterion is met. In this study, 
the criterion is the goal or total number of OPSO iterations. 



3.4. Fitness function 

   To find an optimal FBBFNT, the Root Mean Squared Error (RMSE) is employed as a fitness 

function: 

𝐹𝑖𝑡 𝑖 =   
1

𝑃
  (𝑦𝑡

𝑗
− 𝑦𝑜𝑢𝑡

𝑗
)2𝑃

𝑗=1   (19) 

where p is the total number of samples,  𝑦𝑡
𝑗
 and 𝑦𝑜𝑢𝑡

𝑗
 are the desired output and the FBBFNT model 

output of j
th

 sample. 𝐹𝑖𝑡 𝑖  denotes the fitness value of i
th

 individual. 

3.5. The Learning Algorithm for FBBFNT model 

To find an optimal or near-optimal FBBFNT model, structure and parameters optimization are used 
alternately.  
Combining of the EGP and OPSO algorithms, a hybrid algorithm for evolving FBBFNT model is 
described as follows and is depicted in Fig.6: 

(a) Randomly create an initial population (FBBFNT trees and its corresponding parameters);                  

G = 0 , where G is the generation  number of the learning algorithm; 

global iterations = 0; 

(b) Structure optimization is achieved by the Extended Genetic Programming (EGP) as described in 

section 3.1; 

(c) If a better structure is found or a maximum number of EGP iterations is attained, then go to step 

(d),  

global iterations = global iterations + EGP iterations; 

otherwise go to step (b); 

(d) Parameter optimization is achieved by the OPSO algorithm. The architecture of FBBFNT model 

is fixed, and it is the best tree found by the structure search. The parameters (weights and flexible 

Beta function parameters) encoded in the best tree formulate a particle; 

(e) If the maximum number of OPSO iterations is attained, or no better parameter vector is found for 

a fixed time then go to step (f);  

  global iterations = global iterations + OPSO iterations; 

otherwise go to step (d); 

(f) If satisfactory solution is found or a maximum global iteration number is reached, then the 

algorithm is stopped; otherwise let (G = G +1) and go to step (b); 

 

 



 

Fig. 6.  The Hybrid Learning Algorithm for FBBFNT model. 

4. Experimental results 

To evaluate its performance, the proposed FBBFNT model is submitted to various benchmark 

problems: Mackey-Glass chaotic time series, the Jenkins–Box time series and an example of nonlinear 

control system. The set of parameters which we used for our algorithm are: Population size, Crossover 

probability Mutation probability, Generation gap and Maximum EGP iteration number for the 

Extended Genetic Programming; Population size, Maximum OPSO iteration number, c1 and c2 for the 

Opposite-based Particle Swarm Optimization; and Maximum global iteration number for the Hybrid 

learning algorithm. After many experiences of the system parameters, the chosen parameters to be used 

for all problems are as listed in table 1. 



Table 1. FBBFNT Parameters 

EGP 

Parameter  Initial value 

Population size 50 

Crossover probability 0.3 

Mutation probability 0.6 

Generation gap 0.9 

Maximum EGP iteration number 1000 

OPSO 

Parameter  Initial value 

Population size 50 

Maximum OPSO iteration number 4000 

c1 0.8 

c2 0.8 

Hybrid learning algorithm 

Parameter  Initial value 

Maximum global iteration number 40 000 

Connected weights rand[0, 1] 

Beta centre rand[min(x), max(x)] 

Beta spread rand[0, |max(x)-min(x)|] 

Beta form parameters (𝑝, 𝑞) rand[0, 5] 

For all examples the illustrated results are obtained by averaging the results in 15 runs. 

4.1. Example  1: Mackey–Glass time series prediction 

A time-series prediction problem can be constructed based on the Mackey–Glass [26] differential 

equation: 

𝑑(𝑥 𝑡 )

𝑑𝑡
=  

𝑎𝑥 (𝑡−𝜏)

1+𝑥c (𝑡−𝜏)
− 𝑏𝑥(𝑡)  (20) 

The setting of the experiment varies from one work to another. In this work, the same parameters of 
[33] and [14], namely a = 0.2, b = 0.1, c=10 and τ ≥ 17, were adopted, since the results from these 
works will be used for comparison. As in the studies mentioned above, the task of the neural network is 
to predict the value of the time series at point x t + 6 , with using the inputs variables x t , x t −
6 , x t − 12  and x t − 18 . 1000 sample points are used in our study. The first 500 data pairs of the 
series are used as training data, while the remaining 500 [14, 33] are used to validate the model 
identified. The used Beta operator sets to create an optimal FBONT model is S = F T =
 +2, +3, +4 , +5,/5    x1, x2 , x3 , x4 , where xi  (i = 1, 2, 3, 4) denotes x t , x t − 6 , x t −
12  and x t − 18 , respectively. After 16 generations (G = 16) and 23020 global iterations of the 
hybrid learning algorithm, an optimal FBBFNT model was obtained with RMSE 0.006101. The RMSE 
value for validation data set is 0.006823. The evolved FBBFNT is shown in Fig.7. The actual time-
series data and the output of FBBFNT model are shown in Fig.8. 

 

Fig. 7.  The evolved FBBFNT for prediction of the Mackey-Glass time-series. 



 

Fig. 8. The actual time series data and the output of the evolved FBBFNT model for forecasting Mackey-Glass 

data. 

The proposed system is essentially compared with Hierarchical multi-dimensional differential 

evolution for the design of beta basis function neural network (HMDDE-BBFNN) [33] and the FNT 

model with Gaussian function as flexible neuron operator [14] and also with other systems. The 

HMDDE-BBFNN approach adopts for parameters: 50 to the population size and 10000 to a total 

number of iterations. Moreover, the parameter setting for the FNT system [14] are 30 to the population 

size and 135 as generation number. A comparison result of different methods for forecasting Mackey-

Glass data is shown in Table 2. As observed, the FBBFNT achieves the lowest testing and training 

error.  

Table 2. Comparison of different methods for the Mackey-Glass time-series. 

Method  Training error 

(RMSE) 

Testing error  

(RMSE) 

PSO-BBFN [2] - 0.027 

HMDDE–BBFNN [33] 0.0094 0.0170 

Aouiti [11] - 0.013 

Classical RBF [27] 0.0096 0.0114 

CPSO [39] 0.0199 0.0322 

HCMSPSO [38] 0.0095 0.0208 

FNT [14] 0.0069 0.0071 

FBBFNT 0.0061 0.0068 

4.2. Example  2 : Box and Jenkins’ Gas Furnace Problem 

The gas furnace data of Box and Jenkins [28] was saved from a combustion process of a methane-air 
mixture. It is frequently used as a benchmark example for testing prediction algorithms. The data set 
forms of 296 pairs of input-output measurements. The input u t  is the gas flow into the furnace and 
the output y t  is the CO2 concentration in outlet gas.  

The inputs for constructing FBBFNT model are y t − 1 , u t − 4 , and the output is y t . In this 
work, 200 data samples are used for training and the remaining data samples are used for testing the 
performance of the evolved model.  

The used instruction set for creating a FBBFNT model is S = F T =  +2, +3, +4,/4    x1, x2 , 
where xi (i = 1, 2) denotes y t − 1 , u t − 4 , respectively.  

After 10 generations (G = 10) and 11031 global iterations of the learning algorithm, the optimal 
Beta basis function neural tree model was obtained with the RMSE 0.004796. The RMSE value for 
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validation data set is 0.011618. The evolved FBBFNT is shown in Fig.9. The actual time-series data 
and the output of FBBFNT model are shown in Fig.10. A comparison result of different methods for 
forecasting Jenkins-Box data is shown in Table 3. 

 

Fig. 9.  The evolved FBBFNT for prediction of the Jenkins–Box time-series                                  

(𝑦 𝑡 − 1 ,𝑢 𝑡 − 4 ). 

 

 

Fig. 10. The actual time series data, output of the evolved FBBFNT model                                                                      

for forecasting Jenkins–Box data (𝑦 𝑡 − 1 ,𝑢 𝑡 − 4 ). 

Table 3. Comparison of testing errors of Box and Jenkins. 

 Method  Prediction error  

(RMSE) 

ANFIS model [29] 0.0845 

FuNN model [30] 0.0714 

HyFIS model [31] 0.0648 

FNT [14] 0.0256 

HMDDE [33] 0.2411 

FBBFNT 0.011618 

 

In order to illustrate again the performance of our approach, we have taken two inputs the first one is 

from furnace output and other is from furnace input. Therefore we have construct 24 models of 

different input-output and the training and testing performances of these models are given in table 4. 
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Table 4. Comparison of training and testing errors of Box and Jenkins. 

Input  

Training error (RMSE) Testing error (RMSE) 

ODE 

[37] 

HMDDE 

[33] 

FBBFNT ODE 

[37] 

HMDDE 

[33] 

FBBFNT 

y(t-1), u(t-3) 0.1411 0.1328 0.003460 0.4194 0.2276 0.011457 

y(t-3), u(t-4) 0.2850 0.0210 0.006017 0.7773 0.4224 0.020998 

y(t-2), u(t-4) 0.2898 0.1365 0.005719 0.6602 0.3200 0.016534 

y(t-1), u(t-2) 0.2924 0.1735 0.005757 0.6801 0.2334 0.011496 

y(t-1), u(t-4) 0.2926 0.2411 0.011618 0.5132 0.3745 0.004796 

y(t-4), u(t-4) 0.3428 0.1594 0.007112 0.8894 0.4549 0.023775 

y(t-2), u(t-3) 0.3051 0.1702 0.006611 0.7199 0.2700 0.018575 

y(t-1), u(t-1) 0.4151 0.1598 0.012439 0.6056 0.2577 0.012123 

y(t-4), u(t-3) 0.4301 0.1921 0.014273 1.2771 0.6148 0.028954 

y(t-1), u(t-6) 0.5661 0.6619 0.012475 0.8410 0.6638 0.012193 

y(t-3), u(t-3) 0.5176 0.1600 0.010645 1.0347 0.2521 0.025013 

y(t-2), u(t-2) 0.9753 0.2773 0.015724 0.6261 0.1615 0.025640 

y(t-1), u(t-5) 0.6303 0.3333 0.012425 0.6518 0.5595 0.012250 

y(t-4), u(t-5) 0.6373 0.0178 0.011611 0.9698 0.0203 0.010810 

y(t-2), u(t-1) 0.6844  0.1960 0.023624 1.2726 0.2759 0.022670 

y(t-2), u(t-5) 0.6804 0.2165 0.023612 1.1808 0.4021 0.022377 

y(t-3), u(t-5) 0.7338 0.1346  0.013797 1.0470 0.2307 0.018032 

y(t-3), u(t-2)  0.8600 0.2128 0.032620 1.4138 0.2760 0.030713 

y(t-4), u(t-6) 1.1126  0.1379  0.020954 1.4677 0.2635 0.024996 

y(t-2), u(t-6)  0.8600 0.2128 0.023613 1.2639 0.5590 0.022504 

y(t-4), u(t-2) 1.1963  0.2152  0.022968 1.6377  0.2737 0.033545 

y(t-3), u(t-6)  0.8600 0.2128 0.033015 1.4641  0.4027  0.030156 

y(t-3), u(t-1) 1.2702  0.2135  0.032628 1.6475  0.2803 0.030708 

y(t-4), u(t-1) 2.0217  0.2695 0.039824 2.0217  0.2695 0.036392 

 

From the above simulation results, it can be seen that the proposed FBBFNT model works well for 

generating prediction models of Box and Jenkins‘ gas furnace problem. 

4.3. Example  3 : Nonlinear Plant Control 

In this example, the nonlinear system [28] to be controlled is expressed by: 

𝑦𝑝 𝑡 + 1 =  
𝑦𝑝  𝑡 [𝑦𝑝  𝑡−1 +2][𝑦𝑝  𝑡 +2.5]

8.5+[𝑦𝑝  𝑡 ]
2+[𝑦𝑝  𝑡−1 ]2 + 𝑢(𝑡) (21) 

where yp(t) is the output of the system at the t
th

 time step and u(t) is the plant input which is uniformly 

bounded in the region [-2, 2]. The identification model is in the form of: 

𝑦𝑝 𝑡 + 1 =  𝑓(𝑦𝑝 𝑡 , 𝑦𝑝 𝑡 − 1 ) + 𝑢(𝑡) (22) 

Where 𝑓(𝑦𝑝 𝑡 , 𝑦𝑝 𝑡 − 1 ) is the nonlinear function of yp(t) and yp(t-1) that will be the inputs of 

FBBFNT. The output from neural system will be yp(t+1). In this example, 500 data samples are used 

for training and 500 data samples are used for testing the performance of the evolved model. The input 

signal u(t) is calculated as following: 

 

𝑢 𝑡 =   
2 cos 2𝜋𝑡/100              𝑖𝑓 𝑡 ≤ 200

  1.2 sin 2𝜋𝑡/20              𝑖𝑓 200 < 𝑡 ≤ 500
  (23) 

The used instruction set for creating a FBBFNT model 𝑆 = 𝐹  𝑇 =  +2, +3, +4,/4    𝑥1 , 𝑥2 , 
where 𝑥𝑖  (i = 1, 2) denotes 𝑦𝑝 𝑡 ,𝑦𝑝 𝑡 − 1 , respectively.  

After 17 generations (G = 17) and 20024 global iterations, the optimal Beta operator neural tree 

model was obtained with the RMSE 0.01882. The RMSE value for validation data set is 0.10161. The 

evolved FBBFNT is shown in Fig.11. The actual time-series data and the output of FBBFNT model are 



shown in Fig.12. A comparison result of different methods for forecasting nonlinear plant control data 

is shown in Table 5. The performance of FBBFNT in error fitness is better than that of ODE and those 

HMDDE. Results show that applying the FBBFNT for the nonlinear plant control system improves the 

generalization error. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11.  The evolved FBBFNT for nonlinear plant control. 

 

Fig. 12.  FBBFNT identification performance. 

  

Table 5. Comparison of training and testing errors of nonlinear plant control.  

Input  Training error (RMSE) Testing error (RMSE) 

ODE 

[37] 

HMDDE 

[33] 

FBBFNT ODE 

[37] 

HMDDE 

[33] 

FBBFNT 

y(k),y(k − 1) u(k)  0.019 0.019 0.01882 0.1137 0.110 0.10161 

5. Conclusion  

     In this paper, a hybrid learning algorithm is proposed to create and evolve a Flexible Beta Basis 

Function Neural Tree (FBBFNT) model for various benchmark problems. The work demonstrates that 

the new learning algorithm can successfully optimize the structure and parameters of Beta basis 

function neural network simultaneously by using a tree representation. In fact, the FBBFNT structure is 

developed using Extended Genetic Programming (EGP) and the Beta parameters and connected 

weights are optimized by the Opposite-based Particle Swarm Optimization algorithm (OPSO).  

The experiment results show that the FBBFNT model can effectively predict the time-series 

problem such as Mackey-Glass chaotic time series, the Jenkins–Box time series and an example of 

nonlinear plant control system. 
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