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In this paper, a multi-agent system is introduced to parallelize the Flexible Beta Basis Function Neural
Network (FBBFNT)' training as a response to the time cost challenge. Different agents are formed; a
Structure Agent is designed for the FBBFNT structure optimization and a variable set of Parameter Agents
is used for the FBBFNT parameter optimization. The main objectives of the FBBFNT learning process were
the accuracy and the structure complexity. With the proposed multi-agent system, the main purpose is to
reach a good balance between these objectives. For that, a multi-objective context was adopted which
based on Pareto dominance. The agents use two algorithms: the Pareto dominance Extended Genetic
Programming (PEGP) and the Pareto Multi-Dimensional Particle Swarm Optimization ( PMD_PSO) algo-
rithms for the structure and parameter optimization, respectively. The proposed system is called Pareto
Multi-Agent Flexible Neural Tree (PMA_FNT).

To assess the effectiveness of PMA_FNT, four benchmark real datasets of classification are tested. The
results compared with some classifiers published in the literature.
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1. Introduction

In Artificial Intelligence field, scientists have always meditated
natural life and behaviors to invent and evolve intelligent systems.
We can for instance mention the Artificial Neural Network (ANN)
which was inspired from the human brain behavior, the Evolu-
tionary Computation (EC) algorithms which were inspired from
some natural phenomena and so on [1].

Thanks to its efficiency, the Multi-Layer ANN and in particular
the well known ANN'topology has attracted more attention
nowadays and it is now considered as a powerful system for
complex search problems such as prediction [2], pattern recogni-
tion [3] and classification [4,5].

In fact, the main weakness of the Neural Network training is
the slow convergence to the near desired output, specially with
large problems. To circumvent this weakness, many works hover
around the objective of accelerating the NN training with ameli-
orating its performance. Some researchers focus on only training
the output weights for a very large neural network [6,7]. Others
tried to find some alternatives to improve the MLPs performance.
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In this context, Evolutionary Computation EC has been considered
as a good candidate for the ANN evolution [8]. EC includes Swarm
Intelligence like Particle Swarm Optimization (PSO) [9],
Evolutionary Algorithms such as Genetic Algorithm (GA) [10] as
well as some Mimic Algorithms like Harmony Search (HS) [11] and
so on.

In addition, it is not possible to predict an ideal ANN structure likely
to resolve all the problems. So, a structure adaptive task is required to
improve the Neural Network performance. Decreasing the complexity
of the NN structure and increasing its flexibility has led to the estab-
lishment of a new ANN encoding based on the tree representation
called Flexible Neural Tree (FNT) [3]. The FNT topology is adapted in
our work using the Beta function as a transfer function (FBBENT). Al-
though the FBBFNTs could solve complex problems [12], this model
suffers from high time-cost. In addition, real problems include a large
set of features/inputs which increase the time complexity. So, we have
considered parallelizing the learning process of the FBBFNT so that we
can deal with real problems with respect to time cost.

On the other side, Multi-Agent System (MAS) is viewed as a new
intelligent system inspired from the social system. In fact, as an in-
telligent system, the human being is a part of a social system in which
he operates and interacts with other humans distributed in the same
environment. Much in the same way, MAS distributes and coordinates
a set of jobs, tasks and decisions between different entities, called
agents, to build coherent and interactive systems [13].
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In this work, the Multi-Agent System is used to optimize and
parallelize the learning process of the evolving Flexible Beta Basis
Function Neural Tree (FBBFNT) model. It uses a set of interacting
agents; a Structure Agent for NN architecture/structure optimization
and a set of Parameter Agents for NN parameters optimization.

Indeed, an agent is an independent and autonomous entity that
has the ability to interact, cooperate, coordinate and negotiate
with each other. For that, a communication process is disposed to
ensure a good negotiation between agents. In our model, a nego-
tiation protocol is implemented as a communication protocol. It
ensures the exchange of information between agents which
compete to find the optimal ANN for the treated problem. The
negotiation strategy is based on two factors; the Agent Dominance
Rate (ADR) and the Agent Trust Value (ATV). They ensure the
evaluation of the agent performance in the multi-agent system.

To attain the optimal solution, this model takes into consideration
two main objectives: the accuracy and the structure complexity of the
neural network. In fact, the trade-off between these objectives is
caused by their influence on the convergence and the effectiveness of
the given solution. This conflict is implicitly pointed out in [14,2]. A
simple aggregation of the two objective functions has averted systems
dealing with the conflict. However, these objectives have different
impact on the NN and should ensure good balance between them.
Consequently, we developed a multi-objective optimization to solve
this trade-off. Indeed, the learning process adopted a multi-objective
optimization based on the Pareto dominance. Learning agents use
multi-objective evolutionary algorithms; the Pareto dominance Ex-
tended Genetic Programming algorithm (PEGP) and a Pareto Multi-
Dimensional Particle Swarm Optimization algorithm (PMD_PSO) to
optimize the FBBFNT structure and parameters respectively. According
to the formerly mentioned, the model was called the Pareto Multi-
Agent Flexible Neural Tree PMA_FNT. It will be described in Section 3.
The functionalities and the training method of Structure and Parameter
agents are detailed in Section 3.1 and 3.2, respectively. The commu-
nication process including the strategy and the negotiation protocol
used is described in Section 3.3. In Section 4, the experimentation re-
sults with real classification problems and a comparative study with
other classifiers are presented. The final section introduces some con-
cluding remarks.

2. Related works of ANN’ parallel training

Among the first attempts in parallelizing neural network
training, the model, which is presented in [15,16], distributes
neurons across cluster nodes working in parallel. This method
relies on expensive and complex hardware. From the Network
Parallel Training to the Pattern Parallel Training, Suri et. al. [17] and
Dahl et. al [18] used a duplicated ANN at each node to train a
subset of patterns from the training set in parallel. In [19], Qu-
teishat et al. presented an ANN based on multi-agent classifier
system. These agents work in parallel and form two interacted
agent teams where the communication strategy followed the TNC
(trust, negotiation, communication) reasoning model. Learning
agents were trying to adjust the weights vector of the NN to
provide an accurate classifier for the given patterns. Thus, opti-
mizing the connection weights of the network could largely im-
prove its performance. As a result, many researchers expressed
interest in integrating the evolving population based algorithms as
a framework for learning tasks [20,8]. In this work, a set of agents
is dedicated for parameters optimization using a swarm intelligent
algorithm. These agents could manipulate different neural net-
work structures in the same swarm assuming that it is wiser to
preserve a variety of neural networks rather than just the 'best’
one. Moreover, the best NN structure could not be predicted before
exploring the search space. This hard task was authorized to

another agent, called Structure Agent, in our multi-agent model.
Hence, our model focuses on parallelizing the learning process of a
multi-hidden layer NN including structure evolving and para-
meters evolving. It uses a set of interacted agent for different tasks
forming a multi-agent system. The model adopted a communica-
tion process between agents organized by a negotiation protocol to
lead the system to the optimal ANN with less time and cost.

3. Pareto multi-agent flexible neural tree PMA_FNT

At the beginning, the fundamental characteristics of the used neural
network might be described. Our model belongs to the Multi-Layer
Preceptor (MLP) ANNSs. It has two hidden layers which contain a set of
functional nodes that use the Beta function [21] as a transfer function,
as well as a set of terminal nodes. While the output layer contains one
linear functional node, the input layer is composed of a set of terminal
nodes. It also adopts the tree encoding for a flexible handling with the
ANN optimization. It is called the Flexible Beta Basis Function Neural
Tree (FBBFNT). The FBBFNT, as a universal approximator [22], has
proved its efficiency with benchmark prediction problems. Starting
with a random population of feasible ANNs, the FBBFNT model goes
through a learning/optimization phase in order to reach the optimal
ANN. The ANN optimization consists of two processes: the ANN
structure evolution and the ANN parameter evolution (see Fig. 1).
In general, to seek the optimal ANN for a given problem is a hard task
that requires a long training time. The iterative ANN optimization
process reinforces the dependency between learning tasks and in-
creases time cost. This computation challenge could be overcome by
introducing parallel algorithms/systems [18]. The PMA_FNT distributes
and parallelizes the optimization task between the Structure Agent and
the Parameter Agents (see Fig. 2). They work in cooperation and
communicate through the negotiation protocol. For the optimal solu-
tion to be accurate, it should have the optimal structure with the op-
timal parameters. Indeed, the optimal structure can be defined as the
best distribution of nodes by layers with fewer number of functional
nodes. As previously mentioned, this model aims at looking for the best
FBBENT architecture with the best accuracy rate. In fact the evaluation
of the solution should meet the two systems’ objectives. As far as the
structure complexity is concerned, an adequate function is used to
report the structure complexity of the network. Previously, the number
of node was the principal measure for the network structure [3,14,2]. In
our work, we are suggesting a new function f1 that measures the
congestion rate of terminal and functional nodes by layers. In general, it
computes the External Mean Depth (EMD) of the Tree (T) multiplied by
the number of functional nodes (NFN) (see Eq. (1)).

f1(T) = EMD(T) « NFN(T)

EMD(T) = EPL(T)/NL
NL

EPL(T) = Z path(node;) ;
i=1 (M

where NL is the number of leaves/terminal nodes. In addition, the
accuracy of a model is an important factor to measure its performance.

Learning process
Best structure
T \ 4
[final iteration] r ]

.: l Parameter evolving

Optimal

solution

Best set of
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Fig. 1. FBBFNT evolving process.
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Fig. 2. The global architecture of PMA_FNT.

The function f2 computes the classification rate of the FBBFNT (see
Eq. (2)).

IJ
f2(FBBENT) = % 3 V=Y
j=1 2)

where P value represents the number of samples.
3.1. Pareto dominance extended genetic programming for structure agent

In this work, the optimal structure or the almost-optimal
structure is achieved by using the Pareto dominance Extended
Genetic Programming (PEGP) algorithm. It is an extended version
of The Genetic Programming (GP) paradigm introduced by Koza
[23]. The PEGP algorithm involves three operators: selection,
crossover and mutation.

® Selection operator: It is used to select two individuals from the
population Pt as a parent of the new child procreated by
crossover/mutation operator.

® (rossover operator: It is the swapping operation of two sub-trees
from two different individuals randomly selected.

e Mutation: Four different mutation operators are used in the
PEGP to generate offspring from the parents. These mutation
operators work as follows: changing one terminal node; chan-
ging all the terminal nodes; growing (replacing randomly a leaf
node in hidden layer by a sub-tree); pruning (replacing ran-
domly a beta operator node by a leaf node).

As the genetic operators rely on a probabilistic aspect to choose the
candidate parents and to apply each modification on an arbitrary part
of the FBBFNT, there is no guarantee that the offspring FBBFNT per-
forms better than its parents. So, the outcome needs an evaluation
before joining the population. Respecting the objectives of the
PMA_FNT model, each solution is controlled by the two functions f1
and f2. Facing the trade-off between architecture complexity and ac-
curacy, the offspring solution can join the population when it satisfies
this dominance condition; for each FBBFNT candidate, if it dominates at
least two solutions in the current population, then it will take the place
of the worst solution in this population. So, the Structure Agent exe-
cutes the Pareto dominance Extended Genetic Programming (PEGP)
algorithm as follows:

Algorithm 1. Pareto dominance Extended Genetic Programming
PEGP.

1: Evaluate(population) < [f1(population), f2(population)]
2: repeat
3: if operator is crossover then
(parent,, parent,) = SelectParents(population, sizepqy,qrion)
(child,, child,) = crossover(parent,, parent.)
Evaluate(child,) < [f1(child,), f2(child,)]
if DOMINANCE( child,, population) is true then
Remove the worst individual from population
Add(child,, population)

LN UK

10: end if
11: Evaluate(child,) < [f1(child,), f2(child,)]
12: if DOMINANCE child,, population) is true then

13: Remove worst individual from population
14: Add(child,, population)

15: end if

16: end if

17:  if operator is mutation then

18: (parent) = SelectParents(population, sizepqp, jation)
19: (child) = crossover(parent)

20: Evaluate(child) < [f1(child), f2(child)]
21: if DOMINANCE(child, population) is true then

22: Remove worst individual from population
23: Add(child, population)

24: end if

25: end if

26: until termination condition is satisfied
27: Fronts,,, = FastNonDominationSort(population)
28: return Frontsse;

Algorithm 2. DOMINANCE.

function DOMINANCE Indiv,,,, population = (p,, p,, .

"p5izep0pulation)
2:  stategy,i, < false
dominatedSolutions < 0

4: i1
repeat
6: if Indiv,,,, domine p; then

(dominatedSolutions = dominatedSolutions + 1)

8: end if

i=i+1
10: until (dominatedSolutions = 2) or (i = Sizeypyiqtion)

if dominatedSsolutions=2 then
12: stategyy,, < true

end if
14: return stategomin

end function

140
12t

10+

= *

3.32 0.34 0.36 0.38 04 0.42 044

Fig. 3. Evolution of solutions in different fronts after a parameter optimization This
figure shows an internal state if the ith iteration when four parameter agents sent their
best solution to the structure agent for bi-objective evaluation (accuracy, architecture
complexity).
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At the end of the structure optimization, an evolved population
is obtained and formed by a number of fronts (where front; is the
Pareto front) using the FastNonDominationSort algorithm. This
algorithm is developed by the well known multi-objective algo-
rithm NSGA - II [24]. The number of fronts corresponds to the
number of Parameter Agents in the system. In fact, each agent
treats a set of solutions that belong to one front. Our model does
not focus on one solution in the population to optimize its para-
meters, but, it aims at giving the same opportunity to all solutions
in the population in order to enlarge the search space and discover
better feasible solutions. Experimentally, this method has proved
to be efficient. Some solutions presented in front;,, can dominate
others in front; after a parameter optimization phase. Fig. 3 shows
a study case of four fronts presented in different colors that cor-
respond to the set of Pareto solutions given by four Parameter
agents. At this level, after collecting the agents’ outcomes, the
model selects the solutions that formed the Pareto front of the
global system (black squares). So, the fact that the resulted Pareto
front is formed by different colors means that solutions from dif-
ferent agents are competing to be the optimal one.

3.2. Pareto multi-dimensional particle swarm optimization for
parameter agent

After the structure evolution phase, the FBBFNT model needs
an adjustment of its set of parameters to improve its performance.
The set of ANN parameters is concerned with the Beta function
parameters (center: ¢, spread: s and the form parameters: p and q)
and the connecting weights of the ANN. In this phase we have
chosen to apply the powerful evolutionary algorithm which is the
Particle Swarm Optimization (PSO) algorithm. The shortcoming of
the latter is that it only works only in fixed dimension search
space. However, the parameter agent in this model manages to
work with different network configurations. It is supposed to op-
timize the parameters of the set of FBBFNTs belonging to a de-
signed front which form a heterogeneous population in term of
dimension. Fortunately, in 2009, Kiranyaz et al. [25] introduced a
new version of PSO likely to optimize the position of particles with
different dimensions. It was called the multi-dimensional PSO
(MDPSO). Initially, the FBBFNT is decoded into a matrix containing
the set of parameters of the transfer function in the functional
nodes with the set of connecting weights. Then, these matrices are
duplicated into a set of similar matrices containing random values.
These elements form the howl population. In fact, elements with
the same index present a particle in the Swarm and they are
considered as the different possible dimensions of this particle
(see Fig. 4). As it is known in the basic concept of the PSO algo-
rithm, the particle converges to the global optimum using its best
personal position and the position of the best global particle. In
our case, when the search space is multi-dimensional, the particle
a needs to keep track of its best personal dimension xd, that

corresponds to the best memorized personal position xy*%®. In

addition, the particle memorizes its best position xy %" in a
particular dimension (see Fig. 5(left)). This information is useful
when the particle navigates again with the same dimension.
Moreover, the swarm needs to memorize some information about
the global best positions xygf,'sﬁﬁ in the best global dimension.
Furthermore, it is supposed to know the best position in each
dimension (see Fig. 5(right)). The objective is to seek out the op-
timum positions in all dimensions while navigating in a multi-
dimensional search space. In each iteration, particles try to fly with
one of its possible dimensions to reach the optimum. Then, the
parameter agent evaluates the particles’ performance through two
levels: First, it evaluates the new positions to update the local best
for each particle and the global best of the swarm. Second, it

evaluates the dimension used by each particle to determine the
best dimension representing this particle and the global best di-
mension that corresponds to the global best particle in the swarm
(see Algorithm 3). After a maximum number of iterations, the
resulted swarm contains particles with the best positions in the
different dimensions. In this phase, a Pareto dominance algorithm
is applied on the swarm based on the fitness of particles ( f2
function) and the dimension of particles ( f1 function). It looks for
the best non-dominated solution in the search space. This set of
solutions is then ready to be sent as a response. The applied al-
gorithm is called the Pareto Multi-Dimensional Particle Swarm
Optimization PMDPSO (see Algorithm 3).

Algorithm 3. Pareto Multi-Dimensional Particle Swarm Optimization.

for VaeSdo
sd,(0) < dimension(a)
3:  xx}%O0) < parameters(a)

vd,(0) < rand, vx4©

xdy(0) = xdy(0), Xy, ?(0) = xx;%*(0)
6: end for
>** the function f=1 - f2 supposed to be
the fitness function for the particle evaluation™*
for v t € [1, IterMax] do
for vaeS do
»>** update of the local best position reached
by the particle a in its current dimension xd,(t)**
9: if fox2aOt) < fxy %t — 1)) then
Xdea(”(t) — Xx;‘du(f)(t)
a
>** update of the best particle of the global
best position for the dimension xd, (t)**
if fox]U0©) < fypat o — 1) then
12: ghest(xd,(t)) = a
Xy O = Xy;tfeus(r[&da(t»(f) = xx%Ot)
> ** update of the local best dimension
used by the particle a**
if food%eOt) < xy (¢ — 1) then

15: xd,(t) = xd,(t)
>** update of the global best dimension
in the swarm™*

if FxUO() < f(XFpes(t — 1)) then
dbest = xd(t)

« rand

18: end if
end if

end if
21:  end if
end for

if the termination criteria are met then

24: Stop

else

w(t) = (Maxlter — t) & (W — Wong)/(Maxlter — 1) + y,

27: for YaeSdo »* Compute the new position
of each particle in the swarm according to the local
and global best position for the xd,(t) dimension**
Vx40t + 1) = w(ex %Ot + cl. rie) @yt
—xx3%O(0) + 2. r2()xF* O (t) — xx (b))
xx3%O(t + 1) = xx3%O(t) + vk %Ot + 1)
>** Compute the new dimension of each particle in the

swarm according to the local best dimension of the
particle and the global best dimension in the swarm™**
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30: vdgt+1)= [vda(t) + c1. rlt)xdg(t) — xdg(0) + c2. r2(t)(dbest — xda(t))J
Xdo(t + 1) = xdy(t) + vdy(t + 1)

end for
33: end if
end for

Fronts,,, = FastNonDominationSort(population)
36: return ParetoFront = Frontsg,(1)

3.3. Communication process

The communication process is a collection of techniques that es-
tablish coherent interactions between agents in the system. Generally
speaking, negotiation is an interaction mechanism that aims at resol-
ving a conflict of interest between two or more parts (agents) to reach
mutually beneficial deals [26]. It is a means of communication used
according to the defined protocol and strategies of the agents. Ac-
cording to the context of use, the automated negotiation belongs to one
of these categories: game theory, heuristic and argumentation based. In
negotiation, there are three variables to consider: number of negotia-
tors (one-to-one, one-to-many or many-to-many), the number of is-
sues (single or multiple) and the manner how to deal with these issues
(issue-by-issue or package-deal) [27]. In this work, the communication
is based on a number of bilateral one-to-one negotiations between the
Structure Agent (as an initiator) and a Parameter Agent (as a partici-
pant). In addition, as the agent adopts a multi-objectives optimization,
the PMA_FNT deals with multi-issues negotiations.

3.3.1. Strategy

The strategy consists of mapping the agent state and the received
information onto the next action that is taken during negotiation. The
decision of the agent for the next step in this model is mainly based on
the Agent Dominance Rate (ADR). This rate evaluates the agent per-
formance and contributes to determining the ‘winner and the ‘loser
agent. The strategy adopted by the initiator agent is formulated in the
following set of rules:

® Reject-proposal If [(the agent is not the winner) and (the
stopping criterion was reached)].

® Quit If [(the number of fronts given by the SA was reduced) and
(the agent is the loser)].

® Accept-proposal If [(the agent is the winner) and (the stopping
criterion was reached)].

® Counter-proposal If (the stopping criterion was not reached yet).

In this model, the ADR is defined as the rate of the number of non-
dominated solutions given by the agent per the total number of solu-
tions (see Eq. (3)). It measures the temporary agent performance in
each negotiation round. So, the system needs another factor to illus-
trate the performance of each agent throughout the negotiation ses-
sion. It is the Agent Trust Value (ATV). The ATV factor represents a
control parameter of the degree of trust offered by the system (see Eq.
(4)). A simple comparison between ATVs allows the system to de-
termine the winner and the loser agent. The winner agent is awarded
by the set of solutions of the Pareto front for parameter optimization.
Therefore, the system trusts the ‘winner’ to provide the optimal final
solution (Accept-proposal) in the final round/ global iteration.

nondominated — solutions — number(PA;)

ADR; =
! total — solutions — number 3)

ABVi(t + 1) = a. ABV/(t) + B.ADR; )

where i e [1..N]// N is the number of PAs On the other hand, our
model ensures a multi-objective structure optimization where the

number of resulted fronts is variable. Thus, if the front numbers in-
crease, new agent(s) will be added to the global system. Otherwise
(fronts number decreased), the system looks for the loser agent and
destroys it (Quit) until we obtain the needed agents for the next round.

3.3.2. Negotiation protocol

The exchange of messages between agents is governed by a
communication protocol. The adopted protocol for the PMA_FNT is
a reviewed version of the Iterated Contract Net Interaction Pro-
tocol (see Fig. 6). It is the iterated version of the Contract Net
Protocol defined by Smith and Davis [28]. The negotiation process
includes the different interactions between agents according to
the used protocol. When facing a conflict, the agent executes
various possible alternatives or scenarios.

In our system, the negotiation session starts when the Structure
Agent as an initiator sends a message to all Parameter Agents as
participants, requesting a parameter optimization for a set of so-
lutions in the corresponding front ('C-PO’). The participant informs
the initiator of its agreement and starts the parameter optimiza-
tion process during a fixed period (T < deadline). In parallel, when
the initiator receives the approval for its requests, it applies a
structure optimization for the current population of ANN. After
that, all participants send their proposals.

At this time, SA evaluates the agent performance using ADR
and ATV. This evaluation is based on the comparison between the
set of solutions provided by the PAi when optimizing the frontj
and the set of solutions provided by SA of the front;. (For example,
if the PA; has optimized the solutions in the front 2 then, their
result solutions will be compared with solutions of the front 2 gi-
ven by the SA in the next round.) Thus, we disposed a Pareto
dominance comparison between the two sets according to the
architectural complexity and the accuracy presented by the error
made. Besides, we looked for the number of nondominated solu-
tions from the PA; to compute the ADR value. Only the non-
dominated solutions will join the population as the new front
replacing the previous one.

After the ATV update, the initiator checks the stopping criteria
corresponding to the union of two conditions. The first is {if the
error made by the optimal solution found so far is smaller than a
fixed threshold}. The second is related to the {maximum number
of global iterations}.

® When the stopping criterion is valid (i.e. minimum one condi-
tion was reached), the system is in the final iteration to provide
its final evolved FBBFNT solving the treated problem. In this
case, the initiator responds to the winner agent by

" accept — proposal’. This message informs the agent that the

system considers its best solution as the optimal final solution.

The other agents receive the 'reject — proposal’ message and the

negotiation session is then closed.

e In the opposite case (not final iteration), three alternatives are
possible:

o If the number of the resulted fronts from the last structure
optimization is the same, the initiator responds to all parti-
cipants by a ‘counter-proposal’. The counter-proposal message
contains a novel set of solutions taken from the front in the
current population. This message gets back the scenario to the
previous step. It triggers another optimization phase and
another negotiation round.

o If the number of fronts is reduced, the system will reject the
loser agent (Quit) and search for the needed agents for the
next round.

o If the number of fronts increases, the system will recreate new
agents for the extra fronts (‘C-PO’).
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Fig. 4. Example of a population generation for the MD PSO algorithm: (a) representation of FBBFNTs with different structures (from one front), (b) representation of the
population of FBBFNTs for parameter optimization with different set of parameters, and (c) representation of different particles in the Swarm.
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Fig. 5. The memory of the particle (left) and the swarm (right) in the multi-dimensional PSO.
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Our system was implemented in Matlab platform using the
distributed computing toolbox and the parallel computing toolbox

Fig. 6. Sequential diagram of the negotiation protocol. to design the multi-agent system. In this section, the proposed
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Table 3
The average results of the proposed model generated after 20 runs.

Dataset Training ac-  Testing accu- RMSE Confusion matrix of
curacy (%) racy (%) worst test
TP TN FP FN
Leukemia 99.71 99.68 0123 19 13 1 1
Lymphoma 100 99.72 0108 9 10 0 1
Colon Cancer 99.67 99.36 0.146 10 21 1 1
Lung Cancer 100 99.74 0115 132 14 1 1
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Fig. 8. Comparison of time complexity between FBBFNT and our model.
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Fig. 7. Comparison of classification performance between PMA_FNT and other classifiers for four datasets.

model is applied to some real classification datasets to evaluate its
performance. These well known datasets (such as Leukemia, Colon
Cancer and Lymphoma) are high dimensional. For this reason, a
feature selection phase was interfered to reduce the number of
features and prevent our system from misleading information.
Then, it is compared to some existing works from the literature.

4.1. Data source’

4.1.1. Colon cancer dataset

In cancer research, the Colon cancer ranks second in most
mortal cancers in Western countries. It is a malignant tumor that
is born in the cells of the colon. The colon cancer microarray da-
taset contains 62 samples of gene expression information ex-
tracted from 40 tumors and 22 normal colon tissues [29]. It was
analyzed with microarray containing more than 6500 human
genes. We decided to use 2000 genes (features) where 31 samples
were considered as training set and the remaining 31 samples
were considered as a testing set.

1 Available at: http://sdmc.lit.org.sg/GEDatasets/Datasets.html.

4.1.2. Leukemia dataset

Leukemia is the scientific noun of the blood cancer. The leu-
kemia dataset consists of 72 samples obtained from leukemia
patients. Each contains 7129 features [30]. There are 47 patients
suffering from acute myeloid leukemia (AML) and the rest suffer-
ing from acute lymphoblastic leukemia (ALL). The dataset was
divided into two subsets of samples: a training set contains 38
samples (27 ALL and 11 AML) and a testing set contains 34 samples
(20 ALL and 14 AML).

4.1.3. Diffuse large b-cell lymphoma (DLL Lymphoma)

DLBC Lymphoma is a type of cancer affecting the cells (B white
blood cell) which produce antibodies in the human blood. It is
characterized by the aggressive behavior in the way that the
malicious cells spread widely in the different organs. The DLBC
dataset consists of 27 instances for training and 20 instances for
testing [31]. Each instance/sample is formed by 4026 features and
belongs to one of these classes: germinal (24 samples) or activated
(23 samples).

4.14. Lung cancer dataset
According to last statistics, the Lung cancer is classified as the
second most common cancer in both men and women. The
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Fig. 9. Representation of the PMA_FNT solutions. (1) The optimal solution of PMA_FNT with Leukemia dataset. (2) The optimal solution of PMA_FNT with Colon cancer
dataset. (3) The optimal solution of PMA_FNT with Lung cancer dataset. (4) The optimal solution of PMA_FNT with Lymphoma dataset.

surviving patients’ rates vary depending on early stage diagnosis.
The lung cancer dataset contains two classes; the malignant
pleural mesothelioma (MPM) and adenocarcinoma (ADCA) of the
lung. They are described through 12 533 genes (features) and 181
tissue samples [32]. This dataset is divided into training set con-
taining 32 samples (16 MPM and 16 ADCA) and testing set con-
taining 149 samples (15 MPM and 134 ADCA).

4.2. Feature selection

Recently, the data management has become more difficult due
to the immense data growth in terms of number of instances and
number of features. Many machine learning algorithms suffer from
this enormity which degrades their learning performance. In many
applications such as classification, image retrieval and genome
projects, high dimensional data could not be free from some ir-
relevant and redundant information that misleads the system [33].
Therefore, data preparation known as feature selection is the key
part for successful learning.

Feature selection (FS) is a process of searching the best subset
of attributes in the original dataset. It reduces the feature space
according to the method evaluation criteria. The objective of such
FS algorithm is to find the best combinations of features instead of
working on all features of the dataset. The removal of redundant
and misleading data might reduce the over fitting of the training
time and improve accuracy. In our experiments, we benefited from
the decision tree algorithm (J4.8 version), implemented in Waikato

Environment for Knowledge Analysis (WEKA) [34], to prepare our
datasets presented previously. After applying the feature selection
phase, the number of features was reduced . The list of the selected
features is shown in Table 1.

4.3. Results and discussion

In the PMA_FNT model, the used tree degree is between 2 and
6 as respectively minimum and maximum. Table 2 illustrates the
initialized parameter values in the experimentation.

Our model was applied on four datasets using the training data
for training the FBBFNTs and testing dataset for testing the best
model.

Table 3 contains a set of performance measures to evaluate our
model. Relying on the confusion matrix, many performance mea-
sures, such as accuracy, were used to evaluate the classifier. The
confusion matrix visualizes the number of the correct identifica-
tion of positive samples (TP True Positive) and negative samples
(TN True Negative) and the number of misclassified cases of po-
sitive samples (FP False Positive) and negative samples (FN False
Negative) [35].

In Table 3, we have presented training and testing accuracy mean
rates generated after 20 runs. The accuracy rates are always over 99.3
percent which prove that the proposed method is effective in the
classification for all presented datasets. Moreover, we have presented
the confusion matrix of the worst result during these runs. The fact
that the misclassification rate (FP and FN) is low even in the worst case
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proves the stability and the good performance of our model. Along
with accuracy, the Root Mean Squared Error (RMSE) is considered to
prove the good performance of our model.

In order to make these results more meaningful, a comparative
study between the PMA_FNT model and other classifiers from the
literature was made. Four bar chart graphics were disposed to il-
lustrate the different accuracy rates (see Fig. 7).

In the comparison study, all works used the same datasets
presented previously. In the different tests, we compared our
model with other kind of classifiers like SVM [36-39], K-NN
[40,41], BoostCART [42,43] and Fuzzy system HFBEFS [44]. It re-
sulted in a satisfactory improvement with range around 3% with
Leukemia dataset, between 4% and 6% with Lymphoma dataset,
between 0.3% and 8% with lung cancer dataset, and more than 10%
with Colon cancer dataset. These results report that the evolved
ANN is a good competitor of the other categories of classifiers.

Our goal is not only to prove the effectiveness of the PMA_FNT
model as a classifier, but also to show the good effect of the multi-
agent training process of this model on the results’ accuracy. As a
result, we tried to compare our model with the FNT model and the
FBBFNT model. They were evolving radial and beta FNTs, respec-
tively. The PMA_FNT model shows a light improvement of the
classification accuracy, but we had other performance measure-
ments used in this comparison. Next to the classification accuracy,
the time complexity computed by the Number of Function Eva-
luations (NFEs) and the structure complexity of the Neural Net-
work were adapted in this study.

Regarding the time complexity, Fig. 8 illustrates the operated
time (NFEs) used by two methods (FBBFNT and PMA_FNT) during
the classification of the four datasets (leukemia, colon cancer,
lymphoma, and lung cancer). With a different test, our model
could reach better results in less time (NFEs). Compared with the
FBBFNT model, PMA_FNT reduces the NFEs from 60 355 to 43 717
with Leukemia dataset, from 43 007 to 24 161 with Lymphoma
dataset, from 55 421 to 32 108 with colon cancer dataset, and from
32 108 to 10 027 with Lung cancer dataset (see Fig. 8). These im-
pressive results were explained by the reduction of the global
iteration/round number. It was due to the cooperative work of the
interacted agents to obtain the optimum through negotiation. The
parallel training and the use of many agents optimizing a set of
feasible solutions gave the chance to the model to accelerate the
process and explore better solutions. The better formed solutions
are defined as good classifiers with better structure complexity
(see Fig. 9).The presented solutions of our model are characterized
by the limited number of connections, inputs/features, and the low
degree of the tree.

5. Conclusion

In this paper, we proposed a parallelized learning process for
the Flexible Beta basis Neural Network using a multi-agent ar-
chitecture. This system is called the Pareto Multi-Agent flexible
Neural Tree (PMA_FNT). It looks for the optimal neural network
respecting two main objectives; the accuracy and the structure
complexity. For that, PMA_FNT applies a multi-objective optimi-
zation based on the Pareto dominance. It distributes the learning
process to a Structure agent and a variable set of Parameter agents.
Two evolutionary algorithms are used for the optimization of the
ANN; the Pareto-dominance Extended Genetic Programming for
the ANN structure optimization PEGP and the Pareto Multi-di-
mensional Particle Swarm Optimization PMD_PSO for the ANN
parameters optimization. These agents can work in parallel with
exchanging messages and information. In fact, our system operates
through a communication process between different agents
managed by the negotiation protocol and the agent strategy. It

relies on the ADR and ATV factors to evaluate the agent perfor-
mance and ensure a competitive environment.

The system was evaluated using three real datasets for classi-
fication which are Leukemia, Colon cancer and DLBC Lymphoma
datasets. Its comparison with other classifiers from the literature
proved its higher performance, efficiency and speed.
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