

 Real Stock Trading Using Soft Computing Models

Brent Doeksen1, Ajith Abraham2, Johnson Thomas1 and Marcin Paprzycki1
 1Computer Science Department, Oklahoma State University, OK 74106, USA,
2School of Computer Science and Engineering, Chung-Ang University, Korea,

ajith.abraham@ieee.org, jpt@okstate.edu, marcin@okstate.edu

Abstract

The main focus of this study is to compare different
performances of soft computing paradigms for predicting
the direction of individuals stocks. Three different
artificial intelligence techniques were used to predict the
direction of both Microsoft and Intel stock prices over a
period of thirteen years. We explored the performance of
artificial neural networks trained using backpropagation
and conjugate gradient algorithm and a Mamdani and
Takagi Sugeno Fuzzy inference system learned using
neural learning and genetic algorithm. Once all the
different models were built the last part of the experiment
was to determine how much profit can be made using
these methods versus a simple buy and hold technique.

I. Introduction

The ability to predict the direction of the stock prices is
the most important factor to making money using financial
prediction. All the investor really needs to know is to buy
if the stock is going up in value and to sell if it is
decreasing in value. This paper will delve into some of the
most popular soft computing techniques for stock market
modeling [1]. These methods are: neural networks, fuzzy
inference system, genetic algorithm, and some heuristic
techniques. The most recent studies compare indexes
such as the S&P 500, NASDAQ, and the Dow Jones
[2][4][5][8][10]. The experiments done in this project
examine the chaotic behavior of actual company stocks
that tend to be less stable and thus harder to predict.
Studies have also shown that using direction as compared
to prediction can generate higher profits [4], and this
study will try and capitalize on that idea. Also the
prediction will examine a more realistic situation where an
investor has the choice between multiple stocks, in this
case 2, and chooses the stock that is mostly likely to
increase in value. The experiments also compare many
hybrid AI techniques and their abilities to predict a

categorical output. The data for this research comprised
of prices for Microsoft and Intel Corporations from
January 2nd, 1990 until August 5th, 2003. Information
contained for each daily report is the opening price,
closing price, low price, high prices, and the volume of
shares traded. Economic indicators such as the current
Prime rate, Michigan’s Consumer Sentiment Index, and
the United States Consumer Confidences were also used
to aid the models during the training phase. We explored
the performance of artificial neural networks trained using
backpropagation and conjugate gradient algorithm and
Mamdani and Takagi Sugeno Fuzzy inference system
learned using neural learning and genetic algorithm for
directional prediction.

2. Related Research

Many papers have dealt with input selection when it
comes to mapping financial indexes and stocks
[2][5][16][18][19]. Inputs have been broken into two
different types of inputs, financial and political (which
tend to be qualitative). Kuo et al. [7] uses a genetic
algorithm base fuzzy neural network to measure the
qualitative effects on the stock price. Variable selection is
critical to the success of any network for the financial
viability of a company. Quah et al. [9] identified 5 key
parts namely yield, liquidity, risk, growth, and momentum
factors. Macroeconomic factors such as inflation and
short-term interest rate [5] have to shown to have direct
impacts on the stock returns. A better measure of fitness,
which considers profit [10] has been suggested to replace
a root means squared error. Yao and Poh [12] showed an
example where a model with a low Normalized Mean
Square Error (NMSE) had a lower return than a model
with a higher NMSE. Brownstone [3] recommends using
percentages to measure performance so that the result can
be better understood by traders and other people that
might need their research and are not experts in the field.
Chen et al. [4] used a sliding window to predict the next

day’s price of the index. Everyday the network was
retrained with the most recent 68 days of input with the
attempt to predict the coming day. Commission
(remuneration for services rendered) is commonly
overlooked when doing research relating to stock market
prediction; however, if any model is actually implemented
it is going to incur fees which could greatly affect the
profit predicted by the model. Chen et al. [4] considers 3
different levels of commissions and how it would affect
the best buying strategy used by investors.

3. Hurst Exponent

Some papers have used the Hurst Exponent [10] to prove
that the data is not completely random but in fact has the
correspondence between the input and the output data.
The Hurst Exponent can show the degree of correlation.
If the exponent is 0.5 the data is completely random and
no thus no network will be able to predict the output and
thus it is a waste of time to attempt to learn any pattern in
the data. The closer the Hurst Exponent is to one, the
greater the correlation between the input and output, and a
Hurst Exponent of less than 0.5 means that the input and
output are indirectly proportional. It is important to note
the Hurst Exponent is confined to the range of 0 to 1.

)log(
)/log(

N
SR

entHurstExpon = (1)

S is the standard deviation of the time series before
normalization and R is the maximum and minimum
cumulative deviations of the observation has compared
with the mean of the series. N is the number of
observations

][min][max ,
1

,
1

Nt
Nt

Nt
Nt

N xxR
≤≤≤≤

−= (2)

ntx , , the cumulative deviation, is describe by

�
=

−=
t

u
NuNt xx

1
,)(µ (3)

xµ is the mean of ux for all N elements. The Hurst

exponent can be very useful in any set and allows a
method of comparing sets of data.

4. Soft Computing (SC)

Soft computing comprises of new generation
computationally intelligent hybrid systems consisting of
neural networks, fuzzy inference system, approximate
reasoning and derivative free optimization techniques.
Neural Networks is an attempt at creating a computer that
could learn in a manner similar to humans. Neural
Networks can determine complex function
approximations, classifications, auto associations etc.

Fuzzy logic gives a set of natural language rules that are
easily understood by humans. The primary advantage of
fuzzy logic is its readability. For a first order Takagi-
Sugeno model, a common rule is represented as [14]:
If x is A1 and y is B1, then f1 = p1x + q1y + r1 (4)
where x and y are linguistic variables and A1 and B1 are
corresponding fuzzy sets and p1, q1, r1 are linear
parameters. Usually the least squares algorithm is used to
determine the linear parameters and the membership
function parameters are fine tuned using a neural network
learning method. Initial rules are generated using the grid-
partitioning method [6]. In the inference method proposed
by Mamdani the rule consequence is defined by fuzzy sets
and has the following structure [13]:

1111 CzthenBisyandAisxif = (5)

where x and y are linguistic variables, A1 and B1 are input
fuzzy sets and C1 the corresponding output fuzzy set.
Usually a mixture of neural learning and global
optimization method are used to fine tune the various rule
parameters. Genetic algorithms loosely mimic the concept
of natural selection. Each member is made up of a
chromosome, which is normally a binary string. This
chromosome defines the characteristic of the member of
the population and that allows the algorithm to determine
its fitness. A population is a group of members and
changes from generation to generation through methods
such as mutation and crossover. The fitness function is
used at every generation to see which members are fit and
most likely to survive to the next generation through a
reproduction process.

5. Experiment Setup and Results

The data sets used in this paper originally had data from

January 1990 to August 2003. Since the stock prices had a
big variation during the entire period, all the data prior to
1997 was removed from the data set. This provided 2
services: first it reduced the size of the data set and second
it gave a better split of increasing days to decreasing days.
Studies have shown in classification problems it is
important to have equal representations of both cases in
order to prevent the network from becoming biased
towards the more common value, in this case increasing
days. Intel data set contained less than 1% difference in
the representation of increasing days as compared with
decreasing days, thus further manipulation of the data set
was not required. However Microsoft data during this
period had an increase in 59.6% of the days in the sample
set. In order to prevent the network from heavily favoring
the increased prediction, the data set had increasing
predictions randomly removed until a 55/45 split was
achieved. This allowed experiments to be tested to show
the difference with strong bias and without a bias. Thus

the last year of data from August 1st, 2002 until July 31st,
2003 was held out of set to be used as an unseen testing
set in the simulation.

All days in which the price increased or decreased by
more than 10% in a single day were removed from the
database as these outliers were most likely caused by
external forces. Also days in which less than 0.1%, or no
change occurred were removed because an action
performed by the investor would not affect the bottom
line. The outliers for these models were determined to be
days when trade volume is 4 times the average trade
volume or more. For Microsoft, this value came out to
any day that more than 105 million shares were traded.
The prime rate [11] was also used and any day that rate
was changed was removed from the data set.

Transforming the data into a network usable form is
essential for the success of the network. The data in this
paper was normalized using a min-max normalization.
There are 16 inputs to begin with for the two data sets.
The original 16 inputs that were considered are: consumer
confidence index, the prime rate, Michigan consumer
sentiment Index, price -1 (yesterday), price -2 (day before
yesterday), price -3, price -4, price -5, volume -1 (volume
yesterday), low –1, high –1, open –1, low –2, high –2,
open –1, and volume -2. Several models were used to
determine the least important inputs and then these inputs
were removed before a more accurate and iterative
approach could be used to determine the final inputs. A
genetic algorithm with a population size of 50 was trained
for 100 generations and the sensitivity about the mean test
was conducted to see how important each input is relative
to a particular neural network for prediction of the
outputs. The result for Microsoft data set is shown below
in Figure 1.

Figure. 1. Sensitivity test for Microsoft data

The sensitivity test helped to select the best 9 inputs.
The number of inputs was further reduced to a much more
manageable size using a greedy systematic test using a
neural network classifier. Using the 9 inputs, a feed
forward neural network was built and tested by removing

one input randomly. The network which did the best on
test was kept, thus after the first iteration there were 8
inputs left. All networks were trained 3 times with
randomly initialized weights and the best network
(selection of input variables) was chosen. The neural
network used 20 and 7 neurons in the hidden layers. The
conjugate gradient learning algorithm was used for 10,000
epochs for all the experiments. Table 1 shows the results
that determined CCI (Consumer Confidence Index) should
be removed from Microsoft data. The network with CCI
input had a NMSE of 0.007506, which was worse than the
network that had the input removed (0.007119). Table 2
illustrates the next iteration, which elects volume to be
removed with a NMSE of 0.006871.

Table 1. Snapshot of input reduction with 8 variables

Input
variable

MSE cross
validation NMSE on testing

CCI 0.000520791 0.007118908
close-3 0.000535407 0.007293936
volume 0.000527196 0.007308423
high-2 0.000514665 0.007397344
close-2 0.000529705 0.007571371
open-1 0.000515599 0.007645692
high-1 0.000512655 0.007789516
close-1 0.000600180 0.008804343

Table 2. Snapshot of input reduction with 7 variables

 Input
variable

MSE cross
validation NMSE on testing

volume-1 0.000514894 0.006871094
close-2 0.000517851 0.007191489
high-2 0.000509082 0.007259947
close-3 0.000519643 0.007460574
high-1 0.000532197 0.007658685
open-1 0.000524406 0.007685916
close-1 0.000583583 0.008093149

This process was iterated until the dataset contained the 5
most significant inputs. The final selection of inputs is:
close-1, open-1, high-1, high-2, and close-3.

A soft computing paradigm could be used to model a
regression or classification task. When performing
regression, all the 5 inputs are given to the network, and
the output is the stock price for the next day. Once a test
is completed the predicted price is compared with
yesterday’s price to see if the price increased or
decreased. Classification is much more straightforward.
Before presenting the data to the network the output is
translated to 1, for increase, or 0 for decrease. And the
objective of the network is to correctly predicted 0 or 1.

Some studies have shown that classification can out
perform their regression counterparts. Table 3 illustrates
the regression/classification modeling results using neural
networks.

Table 3. Regression/classification performance

Correct Decrease Increase #
Neurons

MSE NMSE

%

Regression
28 0.00047 0.00666 57.94 37.50 78.14
42 0.00046 0.00679 52.71 31.65 73.52
26 0.00049 0.00734 54.45 36.33 72.36

Classification
24 0.3702 NA 59.98 37.50 82.19
48 0.3689 NA 59.40 35.16 83.35
22 0.3745 NA 62.59 42.18 82.77

When dealing with random sets, showing the same tests
for different randomly selected data sets shows the results
are realizable. The Microsoft data set used in the previous
2 sections was randomized 3 different times and networks
were built for each data set using the same standards
discussed in previous sections to ensure the best possible
networks were created. Results for the three random data
sets are illustrated in Figure 2 and Table 4. As evident, the
performance is comparable and thus the results can be
reliable for any random grouping of the dataset.
The test standards listed below were used for all the
models unless otherwise noted on the results. All neural
network models were trained for 10,000 epochs and cross
validation was used to terminate training after 200 epochs
with no improvement. Also all networks were trained 3
times each with randomized starting weights to ensure the
best possible network by minimizing the chance of
obtaining a local minima. The number of hidden neurons
in the first layer would vary from 10 to 50, with a step size
of 2, to determine which network was best at learning the
data. When a 2-layered neural network was designed the
second layer would contain the ceiling of the log of the
number of neurons in the first layer. The training set was
broken up as 80% training and 20% cross validation.
Table 5 reveals the performance of backpropagation and
conjugate gradient algorithm for the directional prediction
of Microsoft stocks for different number of hidden
neurons.
Performance of the Mamdani Fuzzy Inference System
(FIS) is illustrated in Table 6. Three Membership
Functions (MF’s) were allocated to each input variable
and the membership function parameters were fine tuned
using 200 epochs of gradient descent algorithm and 50
generations of Genetic Algorithm (GA). Uniform
crossover and a population size of 50 was used for the

GA. Similarly the performance of Takagi Sugeno fuzzy
inference system is illustrated in Table 7 for the different
number of Membership Functions (MF’s)/input variable
for 300 epochs of gradient descent and least squares
method.

Table 4. Performance for the different random data sets

Classification Using Difference Sets (Microsoft)

MSE Correct Decrease Increase #
Neurons Set 1

22 0.3745 62.59% 42.18% 82.77%
24 0.3702 59.98% 37.50% 82.19%
48 0.3689 59.40% 35.16% 83.35%

 Set 2
34 0.3920 55.91% 16.21% 90.03%
20 0.3924 58.23% 10.40% 95.92%
38 0.3905 59.40% 26.27% 87.86%

 Set 2
42 0.379365 60.85% 36.33% 80.49%
32 0.382199 59.98% 36.99% 78.39%
54 0.380529 60.85% 37.64% 79.44%

Figure 2. Performance for 3 random data sets

Table 5. Performance of neural networks

Hidden
Neurons MSE Overall

Correct Decrease Increase

 Backpropagation
40 0.3748 59.10% 41.60% 76.41%
36 0.3702 61.14% 36.92% 85.08%

 Conjugate Gradient
48 0.3689 59.40% 35.16% 83.35%
22 0.3745 62.59% 42.18% 82.77%

Table 6. Performance of Mamdani FIS

Epochs RMSE
Training NMSE Testing %

Correct
1000 0.0232 0.0414 53.31
2000 0.0230 0.0412 53.01

Table 7. Performance of Takagi-Sugeno FIS

MF’s NMSE on testing % Correct
3 0.003811 53.67
4 0.004515 56.00
5 0.005447 55.33

5.1. Stock Trading Simulation

Each soft computing model was given $100 at the
beginning of the testing period, August 1, 2003, and the
model bought if it predicted an increase with over a 50%
certainty. The model would hold onto the stock until it
came to a day, which had an increase certainty of less than
50%, and then it would sell the stock. Table 8 shows an
example of this strategy.

Table 8. Financial Simulation Model

Increase
Output Action

of
shares Cash

0.460738 Stay 0 $ 100.00
0.617069 Buy 4.411116 $ -
0.566166 Hold 4.411116 $ -
0.551663 Hold 4.411116 $ -
0.595844 Hold 4.411116 $ -
0.521784 Hold 4.411116 $ -
0.489340 Sell 0 $ 106.93
0.552275 Buy 4.483247 $ -
0.478012 Sell 0 $ 107.69
0.651398 Buy 4.617822 $ -
0.485218 Sell 0 $ 113.78
0.557304 Buy 4.612206 $ -
0.479946 Sell 0 $ 114.29
0.461905 Stay 0 $ 114.29

A similar model was also built which earned the prime
rate for any money that was not invested in the stock and
this resulted in only marginal improvement for all models.
As depicted in Figure 3, profit was improved as much as
889% over a straightforward buy and hold strategy using
the neural network models. The performance was
dependant on the number of hidden neurons. The model,
using 44 hidden neurons was able to profit $103.17 in a
one-year period with an initial investment of $100.00. For
comparison, if the same money bought stocks at the
beginning of the period and sold the stocks at the end of
the period it would have made a profit of $10.43, this is
referred to as a buy and hold strategy. This model
predicted the direction of the stock correctly 63% of the
time. Despite the lack luster performance the model was
able to predict correctly when it counts most. The biggest
draw back of such a scheme in the real world is
commission. The model mentioned above bought and
sold stock a total of 143 times during the 252 trading days

in the simulation period. The total number of trades for
Intel and Microsoft is shown in Figure 4.

Figure 3. Stock trading simulation for Microsoft

22 36 17 18 36 44
 Intel �������� Microsoft

Figure 4. Volume of trades using the SC models

Buy and hold 22 36 17
Figure 5. Stock trading simulation for Intel

Compared to Microsoft, the prediction on Intel’s stock
was inferior in all cases. Two of the 3 models were able
to beat the buy and hold strategy. The only plus side of
Intel performance is it minimized the number of
transactions, thus it would incur less commission if it was
actually implemented. Table 9 illustrates the best models
picked by the lowest MSE on the cross validation set for

both Intel and Microsoft. The profit seen by the best
Model for Intel increased profit over the buy and hold
strategy by 55%.

Table 9. Performance of the optimal models for trading

Mean Squared Error
Training Cross Valid.

Correct Profit ($)

Microsoft (44 neurons)
0.3959 0.3968 63.32% 103.17

Intel (17 neurons)
0.3957 0.3972 54.98% 49.23

6. Conclusions

The ability to predict stocks on a daily basis is a very
difficult problem even for the most advance networks.
The Hurst component confirmed the hypothesis, which is
prediction is possible but especially difficult.
Surprisingly, the Consumer Confidence Index and Prime
Rate were not able to improve the predictability of these
networks. It is clear from all the tests that the networks
were able to learn the pattern in Microsoft’s data much
more easily than Intel’s data, thus it might be possible that
another stock is more learnable than Microsoft. Through
the uses of many techniques it is possible to correctly
predict the direction of the stock 63% of the time for a
large company like Microsoft. Thus, this research
provides the groundwork for financial trading using some
of the well known soft computing paradigms. Even the
worst model used for Microsoft produced a return on
investment of 66%, and the best network scored an
astounding 103% return. This study also demonstrated
that picking the correct stock is as important as building
the best network; as the best network for Intel was
outperformed by the worst network on Microsoft data.
The biggest downfall of these networks is that the
transaction cost of buying and selling stocks would be
very costly. However, it would be feasible to fine tune the
buy and sell strategy to lower this cost.

References

[1] Abraham A., Intelligent Systems: Architectures and

Perspectives, Recent Advances in Intelligent
Paradigms and Applications, Abraham A., Jain L.
and Kacprzyk J. (Eds.), Studies in Fuzziness and
Soft Computing, Springer Verlag Germany, Chapter
1, pp. 1-35, 2002.

[2] Abraham, A., Philip, N. S., and Saratchandran, P.
“Modeling Chaotic Behavior of Stock Indices Using

Intelligent Paradigms. Neural, Parallel and
Scientific Computations, 11 (2003): 143-160.

[3] Brownstone, D. Using Percentage Accuracy to
Measure Neural Network Predictions in Stock
Market Movements. Neurocomputing 10 (1996):
237-250.

[4] Chen, A.S., Leung, M.T., and Daouk, H.
Application of Neural Networks to an Emerging
Financial Market: Forecasting and Trading the
Taiwan Stock Index. Computers and Operations
Research 30 (2003): 901-923.

[5] Izumi, K. and Ueda, K. “Analysis of Exchange Rate
Scenarios Using an Artificial Market Approach.”
Proceeding of the International Conference on
Artificial Intelligence 2 (1999): 360-366.

[6] Jang, J.S.R. “ANFIS: Adaptive-Network-Based
Fuzzy Inference System.” IEEE Transactions on
Systems, Man, and Cybernetics 23 (1993): 665-684.

[7] Kuo, R.J., Chen, C.H., and Hwang, Y.C. “An
Intelligent Stock Trading Decision Support System
through Integration of Genetic Algorithm Based
Fuzzy Neural Network and Artificial Neural
Network.” Fuzzy Sets and Systems, 118 (2001):
21-24.

[8] O’Brian, T. V. “Neural Nets for Direct Marketers”
Marketing Research, Volume 6, Issue 1

[9] Quah, T.S. and Srinivasan, B. “Improving Returns
on Stock Investment through Neural Network
Selection.” Expert Systems with Applications 17
(1999): 295-301.

[10] Yao, J.T. and Tan, C.L. “A Study on Training
Criteria for Financial Time Series Forecasting.”
Proceedings of International Conference on Neural
Information Processing. Nov. 2001: 772-777.

[11] Prime rate:
http://research.stlouisfed.org/fred2/data/PRIME.txt

[12] Yao, J. and Poh, H.L. “Forecasting the KLSE Index
Using Neural Networks.” IEEE International
Conference on Neural Networks 2 (1995) 1012-
1017.

[13] Mamdani E H and Assilian S, An experiment in
Linguistic Synthesis with a Fuzzy Logic Controller,
International Journal of Man-Machine Studies, Vol.
7, No.1, pp. 1-13, 1975.

[14] Sugeno M, Industrial Applications of Fuzzy Control,
Elsevier Science Pub Co., 1985.

