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Abstract 
 
The main focus of this study is to compare different 
performances of soft computing paradigms for predicting 
the direction of individuals stocks.  Three different 
artificial intelligence techniques were used to predict the 
direction of both Microsoft and Intel stock prices over a 
period of thirteen years.  We explored the performance of 
artificial neural networks trained using backpropagation 
and conjugate gradient algorithm and a Mamdani and 
Takagi Sugeno Fuzzy inference system learned using 
neural learning and genetic algorithm.  Once all the 
different models were built the last part of the experiment 
was to determine how much profit can be made using 
these methods versus a simple buy and hold technique.   
 
I. Introduction 
 
The ability to predict the direction of the stock prices is 
the most important factor to making money using financial 
prediction.  All the investor really needs to know is to buy 
if the stock is going up in value and to sell if it is 
decreasing in value. This paper will delve into some of the 
most popular soft computing techniques for stock market 
modeling [1].  These methods are: neural networks, fuzzy 
inference system, genetic algorithm, and some heuristic 
techniques.  The most recent studies compare indexes 
such as the S&P 500, NASDAQ, and the Dow Jones 
[2][4][5][8][10].  The experiments done in this project 
examine the chaotic behavior of actual company stocks 
that tend to be less stable and thus harder to predict.  
Studies have also shown that using direction as compared 
to prediction can generate higher profits [4], and this 
study will try and capitalize on that idea.  Also the 
prediction will examine a more realistic situation where an 
investor has the choice between multiple stocks, in this 
case 2, and chooses the stock that is mostly likely to 
increase in value.  The experiments also compare many 
hybrid AI techniques and their abilities to predict a 

categorical output.  The data for this research comprised 
of prices for Microsoft and Intel Corporations from 
January 2nd, 1990 until August 5th, 2003.  Information 
contained for each daily report is the opening price, 
closing price, low price, high prices, and the volume of 
shares traded.  Economic indicators such as the current 
Prime rate, Michigan’s Consumer Sentiment Index, and 
the United States Consumer Confidences were also used 
to aid the models during the training phase. We explored 
the performance of artificial neural networks trained using 
backpropagation and conjugate gradient algorithm and 
Mamdani and Takagi Sugeno Fuzzy inference system 
learned using neural learning and genetic algorithm for 
directional prediction.   
 
2. Related Research 
 
Many papers have dealt with input selection when it 
comes to mapping financial indexes and stocks 
[2][5][16][18][19].  Inputs have been broken into two 
different types of inputs, financial and political (which 
tend to be qualitative).  Kuo et al. [7] uses a genetic 
algorithm base fuzzy neural network to measure the 
qualitative effects on the stock price.  Variable selection is 
critical to the success of any network for the financial 
viability of a company. Quah et al. [9] identified 5 key 
parts namely yield, liquidity, risk, growth, and momentum 
factors. Macroeconomic factors such as inflation and 
short-term interest rate [5] have to shown to have direct 
impacts on the stock returns. A better measure of fitness, 
which considers profit [10] has been suggested to replace 
a root means squared error.  Yao and Poh [12] showed an 
example where a model with a low Normalized Mean 
Square Error (NMSE) had a lower return than a model 
with a higher NMSE.  Brownstone [3] recommends using 
percentages to measure performance so that the result can 
be better understood by traders and other people that 
might need their research and are not experts in the field.  
Chen et al. [4] used a sliding window to predict the next 



 

day’s price of the index.  Everyday the network was 
retrained with the most recent 68 days of input with the 
attempt to predict the coming day.  Commission 
(remuneration for services rendered) is commonly 
overlooked when doing research relating to stock market 
prediction; however, if any model is actually implemented 
it is going to incur fees which could greatly affect the 
profit predicted by the model.  Chen et al. [4] considers 3 
different levels of commissions and how it would affect 
the best buying strategy used by investors. 

 
3. Hurst Exponent 
 
Some papers have used the Hurst Exponent [10] to prove 
that the data is not completely random but in fact has the 
correspondence between the input and the output data.  
The Hurst Exponent can show the degree of correlation.  
If the exponent is 0.5 the data is completely random and 
no thus no network will be able to predict the output and 
thus it is a waste of time to attempt to learn any pattern in 
the data.  The closer the Hurst Exponent is to one, the 
greater the correlation between the input and output, and a 
Hurst Exponent of less than 0.5 means that the input and 
output are indirectly proportional.  It is important to note 
the Hurst Exponent is confined to the range of 0 to 1. 

)log(
)/log(

N
SR

entHurstExpon =          (1) 

S is the standard deviation of the time series before 
normalization and R is the maximum and minimum 
cumulative deviations of the observation has compared 
with the mean of the series. N is the number of 
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xµ is the mean of ux  for all N elements. The Hurst 

exponent can be very useful in any set and allows a 
method of comparing sets of data. 
 
4. Soft Computing (SC) 
 
Soft computing comprises of new generation 
computationally intelligent hybrid systems consisting of 
neural networks, fuzzy inference system, approximate 
reasoning and derivative free optimization techniques. 
Neural Networks is an attempt at creating a computer that 
could learn in a manner similar to humans. Neural 
Networks can determine complex function 
approximations, classifications, auto associations etc.  

Fuzzy logic gives a set of natural language rules that are 
easily understood by humans.  The primary advantage of 
fuzzy logic is its readability. For a first order Takagi-
Sugeno model, a common rule is represented as [14]:  
If x is A1 and y is B1, then f1 = p1x + q1y + r1    (4) 
where x and y are linguistic variables and A1 and B1 are 
corresponding fuzzy sets and p1, q1, r1 are linear 
parameters. Usually the least squares algorithm is used to 
determine the linear parameters and the membership 
function parameters are fine tuned using a neural network 
learning method. Initial rules are generated using the grid-
partitioning method [6]. In the inference method proposed 
by Mamdani the rule consequence is defined by fuzzy sets 
and has the following structure [13]: 

1111 CzthenBisyandAisxif =     (5) 

where x and y are linguistic variables, A1 and B1 are input 
fuzzy sets and C1 the corresponding output fuzzy set. 
Usually a mixture of neural learning and global 
optimization method are used to fine tune the various rule 
parameters. Genetic algorithms loosely mimic the concept 
of natural selection.  Each member is made up of a 
chromosome, which is normally a binary string.  This 
chromosome defines the characteristic of the member of 
the population and that allows the algorithm to determine 
its fitness.  A population is a group of members and 
changes from generation to generation through methods 
such as mutation and crossover.  The fitness function is 
used at every generation to see which members are fit and 
most likely to survive to the next generation through a 
reproduction process.   
 
5. Experiment Setup and Results 

 
The data sets used in this paper originally had data from 

January 1990 to August 2003. Since the stock prices had a 
big variation during the entire period, all the data prior to 
1997 was removed from the data set.  This provided 2 
services: first it reduced the size of the data set and second 
it gave a better split of increasing days to decreasing days.  
Studies have shown in classification problems it is 
important to have equal representations of both cases in 
order to prevent the network from becoming biased 
towards the more common value, in this case increasing 
days.  Intel data set contained less than 1% difference in 
the representation of increasing days as compared with 
decreasing days, thus further manipulation of the data set 
was not required.  However Microsoft data during this 
period had an increase in 59.6% of the days in the sample 
set.  In order to prevent the network from heavily favoring 
the increased prediction, the data set had increasing 
predictions randomly removed until a 55/45 split was 
achieved.  This allowed experiments to be tested to show 
the difference with strong bias and without a bias.  Thus 



 

the last year of data from August 1st, 2002 until July 31st, 
2003 was held out of set to be used as an unseen testing 
set in the simulation. 

All days in which the price increased or decreased by 
more than 10% in a single day were removed from the 
database as these outliers were most likely caused by 
external forces.  Also days in which less than 0.1%, or no 
change occurred were removed because an action 
performed by the investor would not affect the bottom 
line.  The outliers for these models were determined to be 
days when trade volume is 4 times the average trade 
volume or more.  For Microsoft, this value came out to 
any day that more than 105 million shares were traded.  
The prime rate [11] was also used and any day that rate 
was changed was removed from the data set. 

Transforming the data into a network usable form is 
essential for the success of the network.   The data in this 
paper was normalized using a min-max normalization.   
There are 16 inputs to begin with for the two data sets.  
The original 16 inputs that were considered are: consumer 
confidence index, the prime rate, Michigan consumer 
sentiment Index, price -1 (yesterday), price -2 (day before 
yesterday), price -3, price -4, price -5, volume -1 (volume 
yesterday), low –1, high –1, open –1, low –2, high –2, 
open –1, and volume -2.  Several models were used to 
determine the least important inputs and then these inputs 
were removed before a more accurate and iterative 
approach could be used to determine the final inputs.  A 
genetic algorithm with a population size of 50 was trained 
for 100 generations and the sensitivity about the mean test 
was conducted to see how important each input is relative 
to a particular neural network for prediction of the 
outputs. The result for Microsoft data set is shown below 
in Figure 1. 

 

Figure. 1. Sensitivity test for Microsoft data 

The sensitivity test helped to select the best 9 inputs. 
The number of inputs was further reduced to a much more 
manageable size using a greedy systematic test using a 
neural network classifier.  Using the 9 inputs, a feed 
forward neural network was built and tested by removing 

one input randomly. The network which did the best on 
test was kept, thus after the first iteration there were 8 
inputs left.  All networks were trained 3 times with 
randomly initialized weights and the best network 
(selection of input variables) was chosen.  The neural 
network used 20 and 7 neurons in the hidden layers.  The 
conjugate gradient learning algorithm was used for 10,000 
epochs for all the experiments. Table 1 shows the results 
that determined CCI (Consumer Confidence Index) should 
be removed from Microsoft data. The network with CCI 
input had a NMSE of 0.007506, which was worse than the 
network that had the input removed (0.007119).  Table 2 
illustrates the next iteration, which elects volume to be 
removed with a NMSE of  0.006871. 

Table 1. Snapshot of input reduction with 8 variables 

Input 
variable 

MSE cross 
validation NMSE on testing 

CCI 0.000520791 0.007118908 
close-3 0.000535407 0.007293936 
volume 0.000527196 0.007308423 
high-2 0.000514665 0.007397344 
close-2 0.000529705 0.007571371 
open-1 0.000515599 0.007645692 
high-1 0.000512655 0.007789516 
close-1 0.000600180 0.008804343 

Table 2. Snapshot of input reduction with 7 variables 

  Input  
variable 

MSE cross 
validation NMSE on testing 

volume-1 0.000514894 0.006871094 
close-2 0.000517851 0.007191489 
high-2 0.000509082 0.007259947 
close-3 0.000519643 0.007460574 
high-1 0.000532197 0.007658685 
open-1 0.000524406 0.007685916 
close-1 0.000583583 0.008093149 

  
This process was iterated until the dataset contained the 5 
most significant inputs.  The final selection of inputs is: 
close-1, open-1, high-1, high-2, and close-3.  

A soft computing paradigm could be used to model a 
regression or classification task. When performing 
regression, all the 5 inputs are given to the network, and 
the output is the stock price for the next day.  Once a test 
is completed the predicted price is compared with 
yesterday’s price to see if the price increased or 
decreased. Classification is much more straightforward.  
Before presenting the data to the network the output is 
translated to 1, for increase, or 0 for decrease.  And the 
objective of the network is to correctly predicted 0 or 1.  



 

Some studies have shown that classification can out 
perform their regression counterparts. Table 3 illustrates 
the regression/classification modeling results using neural 
networks. 

Table 3.  Regression/classification performance 

Correct Decrease Increase # 
Neurons 

 
MSE NMSE 

% 

Regression 
28  0.00047 0.00666 57.94 37.50 78.14 
42 0.00046 0.00679 52.71 31.65 73.52 
26 0.00049 0.00734 54.45 36.33 72.36 

Classification 
24 0.3702 NA 59.98 37.50 82.19 
48 0.3689 NA 59.40 35.16 83.35 
22 0.3745 NA 62.59 42.18 82.77 

 
When dealing with random sets, showing the same tests 
for different randomly selected data sets shows the results 
are realizable.  The Microsoft data set used in the previous 
2 sections was randomized 3 different times and networks 
were built for each data set using the same standards 
discussed in previous sections to ensure the best possible 
networks were created. Results for the three random data 
sets are illustrated in Figure 2 and Table 4. As evident, the 
performance is comparable and thus the results can be 
reliable for any random grouping of the dataset. 
The test standards listed below were used for all the 
models unless otherwise noted on the results.  All neural 
network models were trained for 10,000 epochs and cross 
validation was used to terminate training after 200 epochs 
with no improvement.  Also all networks were trained 3 
times each with randomized starting weights to ensure the 
best possible network by minimizing the chance of 
obtaining a local minima.  The number of hidden neurons 
in the first layer would vary from 10 to 50, with a step size 
of 2, to determine which network was best at learning the 
data.  When a 2-layered neural network was designed the 
second layer would contain the ceiling of the log of the 
number of neurons in the first layer.  The training set was 
broken up as 80% training and 20% cross validation.  
Table 5 reveals the performance of backpropagation and 
conjugate gradient algorithm for the directional prediction 
of Microsoft stocks for different number of hidden 
neurons. 
Performance of the Mamdani Fuzzy Inference System 
(FIS) is illustrated in Table 6. Three Membership 
Functions (MF’s) were allocated to each input variable 
and the membership function parameters were fine tuned 
using 200 epochs of gradient descent algorithm and 50 
generations of Genetic Algorithm (GA). Uniform 
crossover and a population size of 50 was used for the 

GA. Similarly the performance of Takagi Sugeno fuzzy 
inference system is illustrated in Table 7 for the different 
number of Membership Functions (MF’s)/input variable 
for 300 epochs of gradient descent and least squares 
method. 

Table 4. Performance for the different random data sets 

Classification Using Difference Sets (Microsoft) 

MSE Correct Decrease Increase # 
Neurons Set 1 

22 0.3745 62.59% 42.18% 82.77% 
24 0.3702 59.98% 37.50% 82.19% 
48 0.3689 59.40% 35.16% 83.35% 

                         Set 2 
34 0.3920 55.91% 16.21% 90.03% 
20 0.3924 58.23% 10.40% 95.92% 
38 0.3905 59.40% 26.27% 87.86% 

                         Set 2 
42 0.379365 60.85% 36.33% 80.49% 
32 0.382199 59.98% 36.99% 78.39% 
54 0.380529 60.85% 37.64% 79.44% 

 
Figure 2. Performance for 3 random data sets 

Table 5. Performance of neural networks 

Hidden 
Neurons MSE Overall 

Correct Decrease Increase 

 Backpropagation 
40  0.3748 59.10% 41.60% 76.41% 
36 0.3702 61.14% 36.92% 85.08% 

 Conjugate Gradient 
48 0.3689 59.40% 35.16% 83.35% 
22 0.3745 62.59% 42.18% 82.77% 

Table 6. Performance of Mamdani FIS 

Epochs RMSE 
Training NMSE Testing % 

Correct 
1000 0.0232 0.0414 53.31 
2000 0.0230 0.0412 53.01 



 

Table 7. Performance of Takagi-Sugeno FIS 

# MF’s NMSE on testing % Correct 
3 0.003811 53.67 
4 0.004515 56.00 
5 0.005447 55.33 

 
5.1. Stock Trading Simulation 
 
Each soft computing model was given $100 at the 
beginning of the testing period, August 1, 2003, and the 
model bought if it predicted an increase with over a 50% 
certainty.  The model would hold onto the stock until it 
came to a day, which had an increase certainty of less than 
50%, and then it would sell the stock.  Table 8 shows an 
example of this strategy. 

Table 8. Financial Simulation Model 

Increase 
Output Action 

# of 
shares  Cash  

0.460738 Stay 0  $ 100.00  
0.617069 Buy 4.411116  $        -    
0.566166 Hold 4.411116  $        -    
0.551663 Hold 4.411116  $        -    
0.595844 Hold 4.411116  $        -    
0.521784 Hold 4.411116  $        -    
0.489340 Sell 0  $ 106.93  
0.552275 Buy 4.483247  $        -    
0.478012 Sell 0  $ 107.69  
0.651398 Buy 4.617822  $        -    
0.485218 Sell 0  $ 113.78  
0.557304 Buy 4.612206  $        -    
0.479946 Sell 0  $ 114.29  
0.461905 Stay 0  $ 114.29  

A similar model was also built which earned the prime 
rate for any money that was not invested in the stock and 
this resulted in only marginal improvement for all models. 
As depicted in Figure 3, profit was improved as much as 
889% over a straightforward buy and hold strategy using 
the neural network models.  The performance was 
dependant on the number of hidden neurons. The model, 
using 44 hidden neurons was able to profit $103.17 in a 
one-year period with an initial investment of $100.00.  For 
comparison, if the same money bought stocks at the 
beginning of the period and sold the stocks at the end of 
the period it would have made a profit of $10.43, this is 
referred to as a buy and hold strategy.  This model 
predicted the direction of the stock correctly 63% of the 
time. Despite the lack luster performance the model was 
able to predict correctly when it counts most.  The biggest 
draw back of such a scheme in the real world is 
commission.  The model mentioned above bought and 
sold stock a total of 143 times during the 252 trading days 

in the simulation period.  The total number of trades for 
Intel and Microsoft is shown in Figure 4. 

 

Figure 3. Stock trading simulation for Microsoft 

22                     36                  17                     18                    36                 44
                           Intel ��������                         Microsoft  

Figure 4. Volume of trades using the SC models 

Buy and hold        22                   36                    17  
Figure 5. Stock trading simulation for Intel 

Compared to Microsoft, the prediction on Intel’s stock 
was inferior in all cases.  Two of the 3 models were able 
to beat the buy and hold strategy.  The only plus side of 
Intel performance is it minimized the number of 
transactions, thus it would incur less commission if it was 
actually implemented. Table 9 illustrates the best models 
picked by the lowest MSE on the cross validation set for 



 

both Intel and Microsoft. The profit seen by the best 
Model for Intel increased profit over the buy and hold 
strategy by 55%.    

Table 9. Performance of the optimal models for trading 

Mean Squared Error 
Training Cross Valid. 

Correct Profit ($) 

Microsoft (44 neurons) 
0.3959 0.3968 63.32% 103.17  

Intel (17 neurons) 
0.3957 0.3972 54.98%    49.23  

 
 
6. Conclusions 
 
The ability to predict stocks on a daily basis is a very 
difficult problem even for the most advance networks.  
The Hurst component confirmed the hypothesis, which is 
prediction is possible but especially difficult.  
Surprisingly, the Consumer Confidence Index and Prime 
Rate were not able to improve the predictability of these 
networks.  It is clear from all the tests that the networks 
were able to learn the pattern in Microsoft’s data much 
more easily than Intel’s data, thus it might be possible that 
another stock is more learnable than Microsoft.  Through 
the uses of many techniques it is possible to correctly 
predict the direction of the stock 63% of the time for a 
large company like Microsoft.  Thus, this research 
provides the groundwork for financial trading using some 
of the well known soft computing paradigms.  Even the 
worst model used for Microsoft produced a return on 
investment of 66%, and the best network scored an 
astounding 103% return.  This study also demonstrated 
that picking the correct stock is as important as building 
the best network; as the best network for Intel was 
outperformed by the worst network on Microsoft data.  
The biggest downfall of these networks is that the 
transaction cost of buying and selling stocks would be 
very costly.  However, it would be feasible to fine tune the 
buy and sell strategy to lower this cost. 
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