
Toward Full-text Searching Middleware over
Hierarchical Documents

Kun Ma∗, Bo Yang†, Ajith Abraham‡§
∗Shandong Provincial Key Laboratory of Network Based Intelligent Computing

University of Jinan, Jinan, China
ise mak@ujn.edu.cn

†Shandong Provincial Key Laboratory of Network Based Intelligent Computing
University of Jinan, Jinan, China

yangbo@ujn.edu.cn
‡Machine Intelligence Research Labs, Scientific Network for Innovation and Research Excellence, WA, USA

§IT4Innovations, VSB-Technical University of Ostrava, Czech Republic
ajith.abraham@ieee.org

Abstract—Currently, full-text searching can benefit from the
emerging NoSQL databases and traditional indexing tools in the
big data era. However, there are some drawbacks of current solu-
tions. On one hand, the indexing documents lack of the hierarchy.
On the other hand, big data have become the bottleneck of full-
text searching. In the context of big data, we design a full-text
searching middleware over hierarchical documents. We discuss
the architecture of this middleware in detail. In addition, we
propose a structure-independent hierarchical document model to
present the hierarchical document. Moreover, the transformation
engine is designed to translate the rich files into models. The
core log event listener is responsible for capturing the changed
documents and push them to the indexing storage at the same
time. The experimental results show that our middleware is
more advantageous than RDBMS with indexes and RDBMS with
Lucene solutions.

Index Terms—Full-text searching; middleware; hierarchical
documents; NoSQL

I. INTRODUCTION

Currently, NoSQL, also referred to as ”Not only SQL”,
is finding significant and growing industry use in big data
and real-time web applications, which emphasize that they
do in fact allow relational query languages to be used [1].
Full-text search refers to techniques for searching a single
formatted document or a collection in a full text database,
which is distinguished from searches based on metadata or
on parts of the original texts represented in databases [2].
However, the quantity of the hierarchical documents has
become bottlenecks on the full-text searching in this context of
big data [3]. For instance, how to full-text search millions of
hierarchical publications with Digital Object Identifier (DOI)
is challenging. To address this limitation, we design a full-
text searching middleware over hierarchical documents in this
paper.

The motivation of our paper is benefiting full-text searching
from the integration of document stores and indexing tool.
The contributions of this paper are several folds. First, we
design a real-time full-text searching middleware for hierar-
chical documents. Second, we abstract a structure-independent

document model to present the hierarchical document, and
design a transformation engine from rich files to these models.
Third, we integrate the indexing tool with document stores to
support high-powered full-text searching. The log-based event
listener intercepts the changes and synchronize them to the
target indexing tool.

The rest of the paper is organized as follows. The related
work is discussed in Section II. Section III abstracts the
hierarchical document into structure-independent hierarchical
document model. In Section IV, we design the architecture of
full-text searching middleware. We introduce a transformation
engine to translate the concrete hierarchical document to this
model in detail. Moreover, we propose the integration solution
of document stores and indexing tool to support full-text
searching. Section V gives the experimental evaluation for
our full-text searching middleware, and compares it with the
existing approaches. Brief conclusions are outlined in the last
section.

II. RELATED RESEARCH

Although the full-text searching of hierarchical documents
is not a new problem, the traditional approaches become
helpless once the quantity of the hierarchical documents is
larger in the age of big data. Currently, there are several
categories of strategies to full-text searching.

The first approach is direct full-text searching of rich text
file [4]. In this solution, the files to be full-text searched
are rich documents, such as PDF, Word, HTML. The search
process is parsing this rich document to extract the text to
make further index. The outstanding defect of this approach
is the heterogeneity of hierarchical documents. As a improved
version, the parser plugins are designed to expand the formats
elastically, which detects and extracts metadata and structured
text content from various documents using existing parser
libraries.

The second approach is relational database management
system (RDBMS) with indexes (abbreviated as RDBMS with



indexes) [5]. Relational databases store data as rows and
columns in tables. A table declaration specifies the columns,
the type of data stored in each column, constraints over
columns, as well as the optional indexes of columns. In
this solution, the hierarchical document consists of processing
those fields into terms that are added to the index. They are
saved in relational tables. The disadvantage of this approach
is the indexing speed limit.

The third alternative approach of full-text searching is spe-
cialized indexing tools integrated with RDBMS (abbreviated
as RDBMS with Lucene), which is designed for rapid indexing
of documents [6]. There are two classical methods. The first
is trigger-based indexing. Generally, triggers solution listens
the original RDBMS to store them in the indexing tools
at the same time. As an improved form of this approach,
some user-defined functions or hooks are developed for the
RDBMS to capture the changes synchronously. However, a
large amount of triggers will impact the database performance.
The second is log-based indexing. The log event listener
intercepts the changes of the original RDBMS to store them in
the indexing tools. Generally, RDBMSs have native support for
the binary logs. There are some deficiencies of this solution.
First, relational schema can not reflect the hierarchy of doc-
uments. Second, RDBMS will have the I/O bottleneck issues
encountered by handling huge amounts of data, especially for
the query operation.

The fourth alternative approach of full-text searching is
document store. A document-oriented database is a kind
of NoSQL designed for storing, retrieving, and managing
document-oriented information [7]. In contrast to well-known
RDBMS, the document stores conform to the hierarchy of
documents to be searched. Although document stores provide
high performance read operations for frequently used queries,
it has very limited functionality on the full-text searching of
specific attributes.

III. STRUCTURE-INDEPENDENT HIERARCHICAL
DOCUMENT MODEL

The hierarchical document is a document with different
sections, just like an academic paper. In this paper, we only
focus on this document to provide the full-text searching.
Each hierarchical document is abstracted into a structure-
independent hierarchical document model rather than the
relational model. The structure of this model is shown in
Figure 1 (a). The basic item of this structure-independent
hierarchical document model is defined as the leaf node in
Figure 1 (b), which is the content of the section of the
hierarchical document. The non-leaf node in Figure 1 (b)
is a section of the hierarchical document, which consists of
several subsections and contents. The root is the accessible
entrance of the hierarchical documents. This model reflects
the hierarchical structure of the documents.

IV. ARCHITECTURE

In this Section, we discuss the architecture of our proposed
real-time full-text searching middleware over hierarchical doc-

uments.

A. Deployment Architecture

The typical architecture of full-text searching middleware
over hierarchical documents is shown in Figure 2. The ar-
chitecture is composed of four parts in order to reduce the
complexity. From the left to the right, they are transformation
engine from file to model, original document stores, log event
listener and indexing storage respectively.

On the left is the transformation engine from files to
structure-independent hierarchical document models, and orig-
inal document stores. The inputs of this middleware are all
kinds of files. The transformation engine is responsible to
translate the rich files into a structure-independent hierar-
chical document models described in the last section. Since
we design full-text searching middleware over hierarchical
documents, we adopt MongoDB as the schema-free document
stores. On the right is indexing storage. In our solution, we
use Apache Lucene to store all the indexed data created based
on the source NoSQL. The core of this architecture is a
log event listener. First, this component captures the changes
from the NoSQL database log. Second, it synchronizes the
target indexing storage based on the increment. For the insert
changes, we will create a new document index in the target
indexing storage. For the update changes, we will obtain the
corresponding document index and then update it at the same
time. For the delete changes, we will delete the corresponding
document index.

B. Transformation Engine from File to Model

The transformation engine is mainly in charge of converting
the rich file to the structure-independent hierarchical document
model. We design a content analysis toolkit to detect and
extract the metadata and structured text content from various
documents using existing parser libraries. There are literally
thousands of different file formats in use, and most of those
formats come in various different versions and dialects. We
design different parser plugins to extract the unstructured
hierarchical documents. For example, we use iText itextpdf
[8] to parse PDF file, jsoup HTML Parser [9] to parse HTML
file, and Apache POI [10] to extract the word files. we seek to
build on the findings of the earlier work [11] [12] in this area
to support transformation from file to model. The architecture
of the transformation engine is shown in Figure 3.

The tentative plan for the transformation from a rich file
to structure-independent hierarchical document model consists
of the following steps: identification, parsing and extraction.
First, we identify the file format based on the MINE header.
Next, we parse the rich files using the configurable plugins.
Finally, we change the extracted text into a hierarchical
structure.

C. Log Event Listener

Our log-based event listener has been designed to intercept
the changes from the source document stores. This flexibility
is achieved by allowing different capturers to be developed and



Fig. 1. Structure-independent hierarchical document model.

Fig. 2. Architecture of full-text searching middleware.

Fig. 3. Transformation from file to model.

plugged into the capture engine. For example, we use oplog
to intercept the changed documents if we choose MongoDB
as document stores. This capturer is typically an embedded
thread and must follow a few semantic constraints.

In the context of change data capture, only the changed
data reading from the operational log are concerned. Docu-

ment store products often provide document-based replication
(DBR) events to capture changed data from operational log.
We can use this API to connect the listener to get the
incremental data. By interpreting the contents of the database,
operational log one can capture the changes made to the
database in a non-intrusive manner.

Next, we will rectify the indexing storage according to the
changed documents. Algorithm 1 presents this procedure. The
function getDocument, addDocument, updateDocument,
and deleteDocument means obtaining, inserting, updating
and deleting the index respectively.

D. Full-text Searching

After we have completed these above steps, all the indexing
data have been stored in the indexed storage. If we need to do
the full-text searching over hierarchical documents, what we
need to do is to search the indexing storage.

V. EVALUATION

We performed experiments on a two-core server (Core(R)
CPU i5-2300 @2.80GHz × 2, 8G RAM, 120G SSD system
disk, 2TB SATA-III disk, Gigabit Ethernet) running Mon-
goDB, Apache Lucene and our full-text searching middleware
over hierarchical documents. The systems were configured
with a Windows Server 2012 x64. We have developed some
test scripts to evaluate the performance of our proposed mid-
dleware. Besides, the performance of RDBMS with indexes,
RDBMS with Lucene and document stores with Lucene are
compared through experiment.

We have made an experiment to test the full-text searching
time of RDBMS with indexes, RDBMS with Lucene, and
document stores with Lucene solutions. We adopt MongoDB
2.4 as the source document stores, and Apache Lucene 4.4 as
the indexing storage.



Algorithm 1 Log Event Listener capture
Input:

Collection name source;
Output:

indexing storage indexing;
1: procedure capture(event)
2: switch (source.event) //log event
3: case WriteDocumentsEvent:
4: for each document ∈ event.getRows() do
5: for each field ∈ document.getColumns() do
6: function(doc) var ret=new Document();

ret.addDocument(field); return ret;
7: end for
8: end for
9: case UpdateDocumentsEvent:

10: for each document ∈ event.getRows() do
11: key=document.getKey();
12: for each field ∈ document.getColumns() do
13: function(doc) var ret=Document.getDocument(key);

ret.updateDocument(field); return ret;
14: end for
15: end for
16: case DeleteDocumentsEvent:
17: for each document ∈ event.getRows() do
18: for each field ∈ document.getColumns() do
19: function(doc) var ret=Document.getDocument(key);

ret.deleteDocument(field); return null;
20: end for
21: end for
22: end switch
23: endprocedure

6,000 60,000 600,000 6,000,000 60,000,000
0

0.5

1

1.5

2

2.5

3
x 10

4

Data size

F
u

ll−
te

x
t 

s
e

a
rc

h
in

g
 t

im
e

 (
m

s
)

 

 

RDBMS with indexes

RDBMS with lucene

Document stores with lucene

Fig. 4. Full-text searching time.

First, we initialize the document stores. We use our trans-
formation engine to generate different hierarchical documents
from the original PDF files, which are the academic papers. We
initialize 6,000, 60,000, 600,000, 6,000,000 and 60,000,000
documents of the source NoSQL. Next, we test a simple

full-text searching ”get all the papers that contain big data”.
The full-text searching time is shown in Figure 4. We can
see our document stores with Lucene solution is the most
advantageous, since we split the long unstructured text into
the fine-grained hierarchical documents. As the index will not
significantly enhance the fuzzy full-text searching, the worst-
case solution is RDBMS with indexes. The eclectic solution
is RDBMS with Lucene. We can conclude that our full-text
searching solution is suitable in the context of big data.

VI. CONCLUSIONS

As the emerging NoSQL databases, document-oriented
databases provide high performance, high availability, and
easy scalability of hierarchical documents. Compared with
the current full-text searching methods, we design real-time
full-text searching middleware over hierarchical documents.
In order to design general full-text searching approach, we
abstract the hierarchical document into structure-independent
hierarchical document model. We also discuss the architecture
and the important parts of this middleware. Experiment shows
the superiority of our proposed middleware.

ACKNOWLEDGMENT

This work was supported by the Doctoral Fund of Univer-
sity of Jinan (XBS1237). Ajith Abraham was supported in
the framework of the IT4 Innovations Centre of Excellence
project, reg. no. CZ.1.05/1.1.00/02.0070 by operational pro-
gramme Research and Development for Innovations funded by
the Structural Funds of the European Union and state budget
of the Czech Republic.

REFERENCES

[1] R. Cattell, “Scalable sql and nosql data stores,” ACM SIGMOD Record,
vol. 39, no. 4, pp. 12–27, 2010.

[2] J. Suchal and P. Nvrat, “Full text search engine as scalable k-nearest
neighbor recommendation system,” in Proceedings of Third IFIP TC 12
International Conference on Artificial Intelligence, 2010, pp. 165–173.

[3] O. Trelles, P. Prins, M. Snir, and R. C. Jansen, “Big data, but are we
ready?” Nature Reviews Genetics, vol. 12, no. 3, pp. 224–224, 2011.

[4] K. Anuradha, R. Sivakaminathan, and P. A. Kumar, “Open-source tools
for enhancing full-text searching of opacs: Use of koha, greenstone and
fedora,” Program: electronic library and information systems, vol. 45,
no. 2, pp. 231–239, 2011.

[5] Z. H. Liu, T. Baby, S. Chakraborty, J. Ding, A. Novoselsky, and V. Arora,
“Pay-as-you-go: an adaptive approach to provide full context-aware
text search over document content,” in Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data, 2010, pp.
1025–1036.

[6] C. Zhang and S. Zhan, “Research and implementation of full-text
retrieval system using compass based on lucene,” in Proceedings of
the 2012 International Conference on Communication, Electronics and
Automation Engineering, 2013, pp. 349–356.

[7] E. Dede, M. Govindaraju, D. Gunter, R. S. Canon, and L. Ramakrish-
nan, “Performance evaluation of a mongodb and hadoop platform for
scientific data analysis,” in Proceedings of the 4th ACM workshop on
Scientific cloud computing, 2013, pp. 13–20.

[8] B. Lowagie, iText in Action, second edition ed. Manning Publications,
2010.

[9] J. Hedley, “jsoup: Java html parser,” 2013, available from
http://jsoup.org/. [Online]. Available: http://jsoup.org/

[10] G. S. Ingersoll, T. S. Morton, and A. L. Farris, Taming Text: How to
Find, Organize, and Manipulate It. Manning Publications, 2013.



[11] K. Ma, B. Yang, Z. Chen, and A. Abraham, “A relational approach
to model transformation with qvt relations supporting model synchro-
nization,” Journal of Universal Computer Science, vol. 17, no. 13, pp.
1863–1883, 2011.

[12] K. Ma, B. Yang, and A. Abraham, “A template-based model trans-
formation approach for deriving multi-tenant saas applications,” Acta
Polytechnica Hungarica, vol. 9, no. 2, pp. 25–41, 2012.


