
International Journal of Network Security, Vol.4, No.3, PP.328–339, Mar. 2007 328

Evolutionary Design of Intrusion Detection
Programs

Ajith Abraham1,3, Crina Grosan2, and Carlos Martin-Vide3

(Corresponding author: Ajith Abraham)

IITA Professorship Program, School of Computer Science and Engineering, Yonsei University1

134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749, Republic of Korea

(e-mail: ajith.abraham@ieee.org)

Department of Computer Science, Babes-Bolyai University2

Kogalniceanu 1, Cluj-Napoca 400084, Romania

Research Group on Mathematical Linguistics (GRLMC), Rovira i Virgili University, Spain3

(Received Oct. 16, 2005; revised and accepted Nov. 25, 2005 & Jan. 27, 2006)

Abstract

Intrusion detection is the process of monitoring the events
occurring in a computer system or network and analyz-
ing them for signs of intrusions, defined as attempts to
compromise the confidentiality, integrity, availability, or
to bypass the security mechanisms of a computer or net-
work. This paper proposes the development of an Intru-
sion Detection Program (IDP) which could detect known
attack patterns. An IDP does not eliminate the use of
any preventive mechanism but it works as the last defen-
sive mechanism in securing the system. Three variants
of genetic programming techniques namely Linear Ge-
netic Programming (LGP), Multi-Expression Program-
ming (MEP) and Gene Expression Programming (GEP)
were evaluated to design IDP. Several indices are used for
comparisons and a detailed analysis of MEP technique is
provided. Empirical results reveal that genetic program-
ming technique could play a major role in develop- ing
IDP, which are light weight and accurate when compared
to some of the conventional intrusion detection systems
based on machine learning paradigms.

Keywords: Intrusion detection program, genetic program-
ming, machine learning, light weight intrusion detection
system

1 Introduction

Computer security is defined as the protection of comput-
ing systems against threats to confidentiality, integrity,
and availability [37]. Confidentiality (or secrecy) means
that information is disclosed only according to policy, in-
tegrity means that information is not destroyed or cor-
rupted and that the system performs correctly, availabil-
ity means that system services are available when they

are needed. Security threats come from different sources
such as natural forces (such as flood), accidents (such as
fire), failure of services (such as power) and people known
as intruders. There are two types of intruders: the exter-
nal intruders who are unauthorized users of the machines
they attack, and internal intruders, who have permission
to access the system with some restrictions. The tradi-
tional prevention techniques such as user authentication,
data encryption, avoiding programming errors and fire-
walls are used as the first line of defense for computer
security. If a password is weak and is compromised, user
authentication cannot prevent unauthorized use, firewalls
are vulnerable to errors in configuration and ambiguous
or undefined security policies. They are generally un-
able to protect against malicious mobile code, insider at-
tacks and unsecured modems. Programming errors can-
not be avoided as the complexity of the system and appli-
cation software is changing rapidly leaving behind some
exploitable weaknesses. Intrusion detection is therefore
required as an additional wall for protecting systems. In-
trusion detection is useful not only in detecting successful
intrusions, but also provides important information for
timely countermeasures.

An intrusion is defined [20] as any set of actions that
attempt to compromise the integrity, confidentiality or
availability of a resource. This includes a deliberate unau-
thorized attempt to access information, manipulate infor-
mation, or render a system unreliable or unusable. An
attacker can gain illegal access to a system by fooling an
authorized user into providing information that can be
used to break into a system. An attacker can deliver a
piece of software to a user of a system which is actually
a trojan horse containing malicious code that gives the
attacker system access. Bugs in trusted programs can be
exploited by an attacker to gain unauthorized access to a
computer system. There are legitimate actions that one



International Journal of Network Security, Vol.4, No.3, PP.328–339, Mar. 2007 329

can perform that when taken to the extreme can lead to
system failure. An attacker can gain access because of an
error in the configuration of a system. In some cases it
is possible to fool a system into giving access by misrep-
resenting oneself. An example is sending a TCP packet
that has a forged source address that makes the packet
appear to come from a trusted host. Intrusions are clas-
sified [38] as six types. Attempted break-ins, which are
detected by typical behavior profiles or violations of secu-
rity constraints. Masquerade attacks, which are detected
by atypical behavior profiles or violations of security con-
straints. Penetration of the security control system, which
are detected by monitoring for specific patterns of activ-
ity. Leakage, which is detected by atypical use of system
resources. Denial of service, which is detected by a typical
use of system resources. Malicious use, which is detected
by atypical behavior profiles, violations of security con-
straints, or use of special privileges.

This paper attempts to illustrate how genetic program-
ming techniques could be deployed for detecting known
types of attacks. In this respect, three genetic program-
ming techniques are used in the experiments. We con-
sidered attack types of varying difficulties. Results are
analyzed by considering several measures like classifica-
tion accuracy, false alarm rate and graphical comparisons
with the target results. As evident from the results, ge-
netic programming techniques are very appealing for de-
veloping light weight (the developed IDS is only a software
fragment) intrusion detection systems.

The paper is organized as follows: Section 2 presents
the related research done in the area of intrusion detec-
tion. In the Section 3, the three genetic programming
techniques applied (LGP, MEP and GEP) are described.
Section 4 contains the set of experiments, discussions and
analysis of results. Section 5 presents conclusions of this
research.

2 Related Research

James Anderson [3] first proposed that audit trails should
be used to monitor threats. All the available system secu-
rity procedures were focused on denying access to sensi-
tive data from an unauthorized source. Dorothy Denning
[13] later proposed the concept of intrusion detection as a
solution to the problem of providing a sense of security in
computer systems. The basic idea is that intrusion behav-
ior involves abnormal usage of the system. The model is a
rule-based pattern matching system. Some models of nor-
mal usage of the system could be constructed and verified
against usage of the system and any significant deviation
from the normal usage flagged as abnormal usage.

Statistical approaches compare the recent behavior of
a user of a computer system with observed behavior and
any significant deviation is considered as intrusion. This
approach requires construction of a model for normal user
behavior. Predictive pattern generation uses a rule base
of user profiles defined as statistically weighted event se-

quences [39]. This method of intrusion detection attempts
to predict future events based on events that have already
occurred.

State transition analysis approach construct the graph-
ical representation of intrusion behavior as a series of state
changes that lead from an initial secure state to a tar-
get compromised state. Using the audit trail as input,
an analysis tool can be developed to compare the state
changes produced by the user to state transition diagrams
of known penetrations [21]. Keystroke monitoring tech-
nique utilizes a user’s keystrokes to determine the intru-
sion attempt. The main approach is to pattern match
the sequence of keystrokes to some predefined sequences
to detect the intrusion.

Model-Based approach attempts to model intrusions
at a higher level of abstraction than audit trail records.
This allows administrators to generate their representa-
tion of the penetration abstractly, which shifts the burden
of determining what audit records are part of a suspect se-
quence to the expert system. This technique differs from
the rule-based expert system technique, which simply at-
tempt to pattern match audit records to expert rules [18].

The pattern matching [24] approach encodes known
intrusion signatures as patterns that are then matched
against the audit data. Intrusion signatures are classified
using structural interrelationships among the elements of
the signatures. The patterned signatures are matched
against the audit trails and any matched pattern can be
detected as an intrusion.

During recent years, several data mining approaches
have been also used to construct IDS [25, 30]. Depren et
al. [14] proposed a novel IDS architecture utilizing both
anomaly and misuse detection. The hybrid IDS architec-
ture consists of an anomaly detection module, a misuse
detection module and a decision support system combin-
ing the results of these two detection modules. The pro-
posed anomaly detection module uses a Self-Organizing
Map (SOM) structure to model normal behavior. The
proposed misuse detection module uses decision tree al-
gorithm to classify various types of attacks. A rule-based
Decision Support System (DSS) is also developed for in-
terpreting the results of both anomaly and misuse detec-
tion modules.

Chen et al. [10] suggested two data mining method-
ologies involving artificial neural networks (ANN) and
support vector machine (SVM) ([40]) and two encod-
ing methods namely simple frequency-based scheme and
tfidf scheme to detect potential system intrusions. Their
experiments show that SVM with tfidf scheme achieved
the best performance, while ANN with simple frequency
based scheme achieved the worst.

Dasgupta et al. [12], presented a security agent ar-
chitecture, which is useful as an administrative tool for
intrusion detection. The agent-based monitoring and de-
tection system, could detect malfunctions, faults, abnor-
malities, misuse, deviations, intrusions, and provide rec-
ommendations (in the form of common intrusion detec-
tion language).



International Journal of Network Security, Vol.4, No.3, PP.328–339, Mar. 2007 330

Zhang and Shen [42] have formulated intrusion detec-
tion as a binary classification problem, using SVM and
additionally, some text processing techniques are also em-
ployed for intrusion detection, based on the characteriza-
tion of the frequencies of the system calls executed by the
privileged programs.

Rohrmair and Lowe [34] demonstrate the modelling
and analysis of IDS using the process algebra commu-
nicating sequential processes and its model checker FDR.
Authors show that this analysis can be used to discover
attack strategies that can be used to blind an IDS, even a
hypothetically perfect one that knows all the weaknesses
of its protected host.

Network-based intrusion detection systems (NIDSs)
frequently have problems with handling heavy traffic
loads in real-time, which result in packet loss and false
negatives. Jiang et al. [22] present a high-performance
network IDS, called HPMonitor, which combines a high-
efficiency detection engine and a load-balancing device to
address these problems. HPMonitor uses a flow-based
dynamic load-balancing algorithm called dynamic least
load first (DLLF) algorithm, and introduces a new multi-
pattern string matching algorithm called shift max al-
gorithm (SMA). The test results reveal that the DLLF
algorithm is an effective balancing algorithm for NIDS.

Current IDS examine all data features to detect intru-
sion or misuse patterns. Some of the features may be re-
dundant or contribute little (if anything) to the detection
process. Chebrolu et al. [9] investigated the performance
of two feature selection algorithms involving Bayesian
networks (BN) and Classification and Regression Trees
(CART) [7] and an ensemble of BN and CART. Empiri-
cal results indicate that significant input feature selection
is important to design an IDS that is lightweight, efficient
and effective for real world detection systems.

Most IDS have a single-level structure can only de-
tect either misuse or anomaly attacks. Some IDSs with
multi-level structure or multi-classifier are proposed to
detect both attacks, but they are limited in adaptive
learning. Zhang et al. [41] proposed a serial hierarchi-
cal IDS (SHIDS)to identify misuse attacks accurately and
anomaly attacks adaptively.

Beghdad [4] introduces a novel anomaly intrusion de-
tection method based on a Within-Class Dissimilarity
(WCD). This approach functions by using an appropri-
ate metric WCD to measure the distance between an un-
known user and a known user defined respectively by their
profile vectors.

Boukerche et al. [8] propose an IDS technique based
upon data analysis inspired by the natural immune human
systems. Authors illustrated how the proposed scheme ex-
tracts salient features of the immune human system and
maps them within a software package designed to iden-
tify security violations of a computer system and unusual
activities according to the usage log files.

Scot [36] proposes latent variable hierarchical model
construction using Bayesian methods which leads to co-
herent systems that can handle the complex distribu-

tions involved with network traffic. Bayes’ rule provides a
means of combining competing intrusion detection meth-
ods such as anomaly detection and pattern recognition.
Bayesian methods present evidence of intrusion as prob-
abilities, which are easy for human fraud investigators
to interpret. Hierarchical approach allows transactions to
communicate information about possible intrusions across
time and accounts.

Support vector machines (SVM) have proven to be a
good candidate for intrusion detection because of its train-
ing speed and scalability [27].

Fuzzy logic has proved to be a powerful tool for decision
making to handle and manipulate imprecise and noisy
data. Three different types of fuzzy classifiers have been
used for intrusion detection. The first classifier uses a
histogram to generate an antecedent membership function
and each attribute is partitioned into several fuzzy sets.
Second method uses a rule generation based on partition
of overlapping areas. The third method uses a neuro-fuzzy
computing framework in which a fuzzy inference system
is learned using neural network learning paradigms [30].

Multivariate Adaptive Regression Splines (MARS) is
an innovative approach that automates the building of
accurate predictive models for continuous and binary de-
pendent variables [17]. It excels at finding optimal vari-
able transformations and interactions, and the complex
data structure that often hides in high-dimensional data.

The swarm intelligence algorithm fully uses agents that
stochastically move around the classification habitat fol-
lowing pheromone concentrations. Having that aim in
mind, a self-organized ANT colony based Intrusion De-
tection System (ANTIDS) is used to cluster the intrusion
patterns [33].

Decision tree induction is one of the classification al-
gorithms in the data mining. Classification algorithm is
inductively learned to construct a model from the pre-
classified data set. The inductively learned model of clas-
sification algorithm is used to develop IDS [7]. Several
hybrid approaches for modelling IDS have been also ex-
plored. Decision Trees (DT) and Support Vector Ma-
chines (SVM) are combined as a hierarchical hybrid intel-
ligent system model (DT-SVM) [30].

An IDS based on general and enhanced Flexible Neu-
ral Tree (FNT) is explored by Chen et al. [11]. Based on
the pre-defined instruction/operator sets, a flexible neural
tree model can be created and evolved. The FNT struc-
ture is developed using an evolutionary algorithm and the
parameters are optimized by particle swarm optimization
algorithm.

3 Genetic Programming Tech-
niques for Intrusion Detection

Genetic Programming (GP) technique provides a frame-
work for automatically creating a working computer pro-
gram from a high-level problem statement of the prob-
lem. Genetic programming achieves this goal of auto-



International Journal of Network Security, Vol.4, No.3, PP.328–339, Mar. 2007 331

matic programming by genetically breeding a population
of computer programs using the principles of Darwinian
natural selection and biologically inspired operations. GP
is the extension of evolutionary learning into the space of
computer programs.

A population of candidate solutions (intrusion detec-
tion programs) is initialized. New solutions are created
by applying reproduction operators (mutation and/or
crossover). The fitness (how good the solutions are) of
the resulting solutions are evaluated and suitable selec-
tion strategy is then applied to determine which solutions
will be maintained into the next generation.

3.1 Linear Genetic Programming (LGP)

Linear Genetic Programming [5, 6] is a variant of the GP
technique that acts on linear genomes. Its main charac-
teristics in comparison to tree-based GP lies in that the
evolvable units are not the expressions of a functional pro-
gramming language (like LISP), but the programs of an
imperative language (like c/c ++). The basic unit of evo-
lution here is a native machine code instruction that runs
on the floating-point processor unit (FPU). LGP uses a
specific linear representation of computer programs. In-
stead of the tree-based GP expressions of a functional
programming language (like LISP) programs of an im-
perative language (like C) are evolved. A LGP individ-
ual is represented by a variable-length sequence of simple
Clanguage instructions. Instructions operate on one or
two indexed variables (registers) r, or on constants c from
predefined sets.

The result is assigned to a destination register, for ex-
ample, ri = rj* c.

A sample LGP program is illustrated below:

void LGP(double v[8])

v[0] = v[5] + 73;

v[7] = v[3] – 59;

if (v[1] >0)

if (v[5] >21)

v[4] = v[2] .v[1];

v[2] = v[5] + v[4];

v[6] = v[7] .25;

v[6] = v[4] – 4;

v[1] = sin(v[6]);

if (v[0] > v[1])

v[3] = v[5] .v[5];

v[7] = v[6] .2;

v[5] = v[7] + 115;

if (v[1] <= v[6])

v[1] = sin(v[7]);

An LGP chromosome can be turned into a functional
representation by successive replacements of variables
starting with the last effective instruction. The maximum
number of symbols in a LGP chromosome is 4 * Number
of instructions.

An important LGP parameter is the number of regis-
ters used by a chromosome. The number of registers is
usually equal to the number of attributes of the problem.
LGP uses a modified steady-state algorithm. The initial
population is randomly generated. The following steps
are repeated until a termination criterion is reached: Four
individuals are randomly selected from the current popu-
lation. The best two of them are considered the winners
of the tournament and will act as parents. The parents
are recombined and the offspring are mutated and then
replace the losers of the tournament.

The settings of various linear genetic programming
system parameters are of utmost importance for suc-
cessful performance of the system. The population
space has been subdivided into multiple subpopulation
or demes. Migration of individuals among the sub-
populations causes evolution of the entire population. It
helps to maintain diversity in the population, as migra-
tion is restricted among the demes. Moreover, the ten-
dency towards a bad local minimum in one deme can be
countered by other demes with better search directions.

The various LGP search parameters are the mutation
frequency, crossover frequency and the reproduction fre-
quency. The crossover operator acts by exchanging se-
quences of instructions between two tournament winners.
Steady state genetic programming approach was used to
manage the memory more effectively.

3.2 Multi Expression Programming
(MEP)

A GP chromosome generally encodes a single expression
(computer program). By contrast, a Multi Expression
Programming (MEP) chromosome encodes several ex-
pressions [28, 29]. The best of the encoded solution is
chosen to represent the chromosome by supplying the fit-
ness of the individual.

MEP genes are represented by substrings of a variable
length. The number of genes per chromosome is constant.
This number defines the length of the chromosome. Each
gene encodes a terminal or a function symbol. A gene that
encodes a function includes pointers towards the function
arguments. Function arguments always have indices of
lower values than the position of the function itself in the
chromosome.

An example of a chromosome using the sets F= {+,
*} and T= {a, b, c, d} is given below:

1: a

2: b

3: + 1, 2

4: c

5: d

6: + 4, 5

7: * 3, 6



International Journal of Network Security, Vol.4, No.3, PP.328–339, Mar. 2007 332

The maximum number of symbols in the MEP chro-
mosome is given by:

number of symbols = (n + 1)(numberofgenes −−1) + 1,

where n is the number of arguments of the function with
the greatest number of arguments. The maximum number
of effective symbols is achieved when each gene (except
the first one) encodes a function symbol with the highest
number of arguments. The minimum number of effective
symbols is equal to the number of genes and it is achieved
when all genes encode terminal symbols only.

The translation of a MEP chromosome into a com-
puter program represents the phenotypic transcription of
the MEP chromosomes. Phenotypic translation is ob-
tained by parsing the chromosome top-down. A termi-
nal symbol specifies a simple expression. A function sym-
bol specifies a complex expression obtained by connecting
the operands specified by the argument positions with the
current function symbol.

For instance, Genes 1, 2, 4 and 5 in the previous
example encode simple expressions formed by a single
terminal symbol. These expressions are:

E1 = a,

E2 = b,

E4 = c,

E5 = d.

Gene 3 indicates the operation + on the operands lo-
cated at Positions 1 and 2 of the chromosome. Therefore
Gene 3 encodes the expression: E3 = a + b. Gene 6
indicates the operation + on the operands located at Po-
sitions 4 and 5. Therefore Gene 6 encodes the expression:
E6 = c + d. Gene 7 indicates the operation * on the
operands located at Positions 3 and 6. Therefore Gene 7
encodes the expression: E7 = (a + b) * (c + d). E7 is the
expression encoded by the whole chromosome. Due to its
multi expression representation, each MEP chromosome
may be viewed as a forest of trees rather than as a single
tree, which is the case of GP.

3.3 Gene Expression Programming

The individuals of GEP [15, 16] are encoded as linear
chromosomes which are expressed or translated into ex-
pression trees (branched entities). Thus, in GEP, the
genotype (the linear chromosomes) and the phenotype
(the expression trees) are different entities (both struc-
turally and functionally) that, nevertheless, work together
forming an indivisible whole.

In contrast to its analogous cellular gene expression,
GEP is rather simple. The main players in GEP are only
two: the chromosomes and the Expression Trees (ETs),
being the latter the expression of the genetic information
encoded in the chromosomes. GEP uses linear chromo-
somes that store expressions in breadth-first form. A GEP
gene is a string of terminal and function symbols. GEP

genes are composed of a head and a tail. The head con-
tains both function and terminal symbols. The tail may
contain terminal symbols only. For each problem the head
length (denoted h) is chosen by the user. The tail length
(denoted by t) is evaluated by:

t = (n − 1)h + 1,

where n is the number of arguments of the function with
more arguments. Let us consider a gene made up of sym-
bols in Set S:

S = {∗, +,−, a, b}.

In this case n = 2. If we choose h = 10, then we get
t = 11, and the length of the gene is 10 + 11 = 21. Such
a gene is given below:

CGEP = + ∗ ab − +aab + ababbbababb.

The expression encoded by the gene CGEP is:

E = a + b ∗ ((a + b) − a).

GEP genes may be linked by a function symbol in order
to obtain a fully functional chromosome. In the current
version of GEP the linking functions for algebraic expres-
sions are addition and multiplication. A single type of
function is used for linking multiple genes.

The initial population is randomly generated. The fol-
lowing steps are repeated until a termination criterion is
reached: A fixed number of the best individuals enter the
next generation (elitism). The mating pool is filled by us-
ing binary tournament selection. The individuals from the
mating pool are randomly paired and recombined. Two
offspring are obtained by recombining two parents. The
offspring are mutated and they enter the next generation.

4 Experiment Setup and Results

We performed five experiments using five different test
data. The data for our experiments was prepared by the
1998 DARPA intrusion detection evaluation program by
MIT Lincoln Labs [26]. The data set has 41 attributes
for each connection record plus one class label as given
in Table 1. The data set contains 24 attack types that
could be classified into four main categories:

DoS: Denial of Service
Denial of Service (DoS) is a class of attack where

an attacker makes a computing or memory resource
too busy or too full to handle legitimate requests, thus
denying legitimate users access to a machine.

R2L: Unauthorized Access from a Remote Ma-
chine

A remote to user (R2L) attack is a class of attack
where an attacker sends packets to a machine over a
network, then exploits the machine’s vulnerability to



International Journal of Network Security, Vol.4, No.3, PP.328–339, Mar. 2007 333

illegally gain local access as a user.

U2R: Unauthorized Access to Local Super User
(root)

User to root (U2Su) exploits are a class of attacks
where an attacker starts out with access to a normal user
account on the system and is able to exploit vulnerability
to gain root access to the system.

Probing: Surveillance and Other Probing
Probing is a class of attack where an attacker scans a

network to gather information or find known vulnerabil-
ities. An attacker with a map of machines and services
that are available on a network can use the information
to look for exploits.

Experiments presented in this paper have two phases
namely training and testing. In the training phase, LGP,
MEP and GEP models were constructed using the train-
ing data to give maximum generalization accuracy on the
unseen data. The test data is then passed through the
saved trained model to detect intrusions in the testing
phase. The 41 features are labelled as shown in Table 1
and the class label is named as AP.

This data set has five different classes namely Normal,
DoS, R2L, U2R and Probes. The training and test com-
prises of 5,092 and 6,890 records respectively [23]. All the
training data were scaled to (0-1). Using the data set,
we performed a 5-class classification. The normal data
belongs to Class 1, probe belongs to Class 2, denial of
service belongs to Class 3F, user to super user belongs to
Class 4, remote to local belongs to Class 5.

4.1 Parameters Settings

The various parameter settings for LGP is depicted in
Table 2 [1]. Parameters used by MEP are presented in
Table 3 [19]. We made use of +, - , *, /, sin, cos, sqrt, ln,
lg, log2, min, max, and abs as function’s set. Parameters
used by GEP are depicted in Table 4.

4.2 Results Analysis and Discussions

Experiment results (for test data set) using all the three
techniques are depicted in Table 5. As evident from Table
5, MEP obtained the best results for Normal, U2R and
R2L types of attacks. LGP gave the best test results for
Probe and DoS classes but did not perform well for U2R
class. GEP performed moderately well for all the attack
classes. In Table 6 the variable combinations evolved by
MEP are presented. In Table 6, var represents Variable
number (Column 1 in Table 1). It is to be noted that
only these few variables are required to detect the a par-
ticular type of attack. This leads to a very light intrusion
detection system when compared to a fuzzy expert sys-
tem (which requires so many rules) or a artificial neural
network with so many hidden neurons [1, 2].

We also analyzed the True Positive Rate (TPR) and
False Positive Rates (FPR) for MEP and GEP in order

Table 1: Variables for intrusion detection data set

Variable No. Variable name Variable type Variable label

1 duration continuous A
2 protocol type discrete B
3 service discrete C
4 flag discrete D
5 src bytes continuous E
6 dst bytes continuous F
7 land discrete G
8 wrong fragment continuous H
9 urgent continuous I
10 hot continuous J
11 num failed logins continuous K
12 logged in discrete L
13 num compromised continuous M
14 root shell continuous N
15 su attempted continuous O
16 num root continuous P
17 num file creations continuous Q
18 num shells continuous R
19 num access files continuous S
20 num outbound cmds continuous T
21 is host login discrete U
22 is guest login discrete V
23 count continuous W
24 srv count continuous X
25 serror rate continuous Y
26 srv serror rate continuous X
27 rerror rate continuous AA
28 srv rerror rate continuous AB
29 same srv rate continuous AC
30 diff srv rate continuous AD
31 srv diff host rate continuous AE
32 dst host count continuous AF
33 dst host srv count continuous AG
34 dst host same srv rate continuous AH
35 dst host diff srv rate continuous AI
36 dst host same src port rate continuous AJ
37 dst host srv diff host rate continuous AK
38 dst host serror rate continuous AL
39 dst host srv serror rate continuous AM
40 dst host rerror rate continuous AN
41 dst host srv rerror rate continuous AO



International Journal of Network Security, Vol.4, No.3, PP.328–339, Mar. 2007 334

Table 2: Parameter setting for LGP

Parameter
Value
Normal Probe DoS U2R R2L

Population size 2048 2048 2048 2048 2048
Maximum no of tourna-
ments

120000 120000 120000 120000 120000

Tournament size 8 8 8 8 8
Mutation frequency (%) 85 82 75 86 85
Crossover frequency (%) 75 70 65 75 70
Number of demes 10 10 10 10 10
Maximum program size 256 256 256 256 256

Table 3: Parameters used by MEP

Parameter
Value
Normal Probe DoS U2R R2L

Population size 100 200 250 100 100
Number of generations 30 200 800 20 800
Chromosome length 30 40 40 30 40
Crossover frequency (%) 90 90 80 90 90
No. of mutations per chro-
mosome

3 4 5 3 4

Table 4: Values of parameters used by GEP

Parameter
Value
Normal Probe DoS U2R R2L

Population size 100 100 100 100 100
Number of generations 800 500 500 500 500
Number of genes 12 12 12 14 12
Mutation 0.1 0.1 0.1 0.1 0.1
One point crossover 0.4 0.4 0.3 0.4 0.4
Two points crossover 0.4 0.4 0.3 0.4 0.4
Gene recombination 0.2 0.2 0.1 0.1 0.2
Gene transposition 0.2 0.2 0.1 0.1 0.2

Table 5: Performance comparison between LGP, MEP and MEP
Classification Accuracy on Test Data Set (%)
Normal Probe DoS U2R R2L

LGP 99.73 99.89 99.95 64.00 99.47
MEP 99.82 95.39 98.94 99.75 99.75
GEP 99.80 97.84 95.64 99.64 98.92



International Journal of Network Security, Vol.4, No.3, PP.328–339, Mar. 2007 335

Table 6: Functions evolved by MEP
Attack type Evolved Function
Normal var12 ∗ log2(var10 + var3)
Probe (fabs(var30 + var35)) < (var26 +

var27)?(fabs(var30 + var35)) : (var26 + var27);
DOS var38 − (Ln(var41 ∗ var6) + sin(Lg(var30))) −

(Lg(var30) − (var41 ∗ var6))) > (0.3415 +
var24 + var41 ∗ var6)?(var38 − (Ln(var41 ∗ var6) +
sin(Lg(var30))) − (Lg(var30) − (var41 ∗ var6))) :
(0.3415 + var24 + var41 ∗ var6) + var8

U2R sin(var14) − var33
R2L fabs((fabs(var8 > (var1 + (var6 >

(Ln(var6))?var6 : (Ln(var6))) ∗ var3)?var10 :
(var1 + (var6 > (Ln(var6))?var6 : (Ln(var6))) ∗
var3))) ∗ (var12 + var6)) + var11

to determine the efficiency of the developed IDP’s [32].
The values of TPR and FPR obtained by MEP and GEP
for the test data set are depicted in Table 7. The true
positive rate (TP) is given by:

TP =
positives correctly classified

total positives

The false positive rate (FP) is given by:

FP =
total negatives - negatives incorrectly classified

total negatives

As evident from Table 7, when compared to LGP, MEP
obtained the best values for TPR and FPR for Normal
and DoS and good performance for the other classes.
MEP required only 30 and 20 generations for the Nor-
mal and U2R types respectively.

MEP performance is illustrated in Figures 1 and 2.
The classification accuracy for the best results obtained
for training data, average of results obtained for the test
data using the best trained function and the best results
obtained for the test data are depicted. Figure 1(a) cor-
responds to Normal, Figure 1(b) corresponds to Probe,
Figure 1(c) corresponds to DOS, Figure 1(d) corresponds
to U2R and Figure 1(e) corresponds to R2L class respec-
tively.

In Figure 2, the average of classification accuracies for
the results obtained for training data and for the results
obtained for the test data are depicted. Figure 2(a) cor-
responds to Normal, Figure 2(b) corresponds to Probe,
Figure 2(c) corresponds DOS, Figure 2(d) corresponds to
U2R and Figure 2(e) corresponds to R2L class respec-
tively.

Figures 3 - 7 illustrate the growth in the program codes
for LGP during the 120 tournaments. The best and aver-
age code length is depicted during the evolutionary learn-
ing.

Most machine learning paradigms (artificial neural net-
works, support vector machines, decision trees etc.) ex-
amine all the input features to detect intrusions or mis-
use patterns. Some of the features may be redundant or

Figure 1: Relation between accuracy and number of gen-
erations



International Journal of Network Security, Vol.4, No.3, PP.328–339, Mar. 2007 336

Table 7: Comparison of false alarm rates

Attack type

MEP
GEP

Best result for train ap-
plied for test

Best result for test

TP FP TP FP TP FP
Normal 0.996 0.999 0.996 0.999 0.996 0.999
Probe 0.548 0.999 0.947 0.982 0.999 0.9748
DoS 0.986 0.995 0.987 0.999 0.918 0.943
U2Su 0.40 0.999 0.400 0.999 0.437 0.995
R2L 0.969 1 0.973 1 0.989 0.984

Figure 2: Average of classification accuracy for the results
obtained by MEP for training and test data

Normal

0

50

100

150

200

250

0


6
0
0
0


1
2
0
0
0


1
8
0
0
0


2
4
0
0
0


3
0
0
0
0


3
6
0
0
0


4
2
0
0
0


4
8
0
0
0


5
4
0
0
0


6
0
0
0
0


6
6
0
0
0


7
2
0
0
0


7
8
0
0
0


8
4
0
0
0


9
0
0
0
0


9
6
0
0
0


1
0
2
0
0
0


1
0
8
0
0
0


1
1
4
0
0
0


1
2
0
0
0
0


No. of tournaments

C
o

d
e
 l
e
n

g
th



Average Length Best length

Figure 3: Growth of LGP program codes for normal class

Probe

0

50

100

150

200

250

0


6
0
0
0


1
2
0
0
0


1
8
0
0
0


2
4
0
0
0


3
0
0
0
0


3
6
0
0
0


4
2
0
0
0


4
8
0
0
0


5
4
0
0
0


6
0
0
0
0


6
6
0
0
0


7
2
0
0
0


7
8
0
0
0


8
4
0
0
0


9
0
0
0
0


9
6
0
0
0


1
0
2
0
0
0


1
0
8
0
0
0


1
1
4
0
0
0


1
2
0
0
0
0


No. of tournaments

C
o

d
e
 l
e
n

g
th



Average Length Best length

Figure 4: Growth of LGP program codes for probe class



International Journal of Network Security, Vol.4, No.3, PP.328–339, Mar. 2007 337

DoS

0

50

100

150

200

250

300

0


6
0
0
0


1
2
0
0
0


1
8
0
0
0


2
4
0
0
0


3
0
0
0
0


3
6
0
0
0


4
2
0
0
0


4
8
0
0
0


5
4
0
0
0


6
0
0
0
0


6
6
0
0
0


7
2
0
0
0


7
8
0
0
0


8
4
0
0
0


9
0
0
0
0


9
6
0
0
0


1
0
2
0
0
0


1
0
8
0
0
0


1
1
4
0
0
0


1
2
0
0
0
0


No. of tournaments

C
o

d
e
 l
e
n

g
th



Average Length Best length

Figure 5: Growth of LGP program codes for DOS class

U2R

0

20

40

60

80

100

120

140

160

180

200

0


6
0
0
0


1
2
0
0
0


1
8
0
0
0


2
4
0
0
0


3
0
0
0
0


3
6
0
0
0


4
2
0
0
0


4
8
0
0
0


5
4
0
0
0


6
0
0
0
0


6
6
0
0
0


7
2
0
0
0


7
8
0
0
0


8
4
0
0
0


9
0
0
0
0


9
6
0
0
0


1
0
2
0
0
0


1
0
8
0
0
0


1
1
4
0
0
0


1
2
0
0
0
0


No. of tournaments

C
o

d
e
 l
e
n

g
th



Average Length Best length

Figure 6: Growth of LGP program codes for U2R class

R2L

0

50

100

150

200

250

0


6
0
0
0


1
2
0
0
0


1
8
0
0
0


2
4
0
0
0


3
0
0
0
0


3
6
0
0
0


4
2
0
0
0


4
8
0
0
0


5
4
0
0
0


6
0
0
0
0


6
6
0
0
0


7
2
0
0
0


7
8
0
0
0


8
4
0
0
0


9
0
0
0
0


9
6
0
0
0


1
0
2
0
0
0


1
0
8
0
0
0


1
1
4
0
0
0


1
2
0
0
0
0


No. of tournaments

C
o

d
e
 l
e
n

g
th



Average Length Best length

Figure 7: Growth of LGP program codes for R2L class

contribute little to the detection process (even could af-
fect the performance adversely). The presented GP tech-
niques could be used to pick up significant features ran-
domly and explore the performance. As depicted in Table
6, MEP required only 3, 4, 6, 2 and 7 features (instead
of the complete 41 features) to detect the Normal, Probe,
DoS, U2R and R2L types of attacks respectively.

In some classes the accuracy figures tend to be very
small and may not be statistically significant, especially
in view of the fact that the 5 classes of patterns differ in
their sizes tremendously. For example only 27 data sets
were available for training the U2R class. More defini-
tive conclusions can only be made after analyzing more
comprehensive sets of network traffic.

5 Conclusions

This paper illustrated the importance of GP techniques
for developing intrusion detection systems. MEP outper-
formed LGP for three of the considered attack classes and
LGP outperformed MEP for two of the attack classes.
GEP also obtained good results for all of the classes. MEP
and GEP classification accuracy is grater than 95% for all
considered classes. For three classes, MEP classification
accuracy is greater than 99.75%. It is to be noted that
for real time intrusion detection systems MEP, LGP and
GEP would be the ideal candidates since they can be im-
plemented at machine code level.

Perhaps the greatest advantage of genetic program-
ming comes from the ability to develop IDP’s for which
there are no human experts. Although human expertise
should be used when it is available, it often proves less
than adequate for automating problem-solving routines.

References

[1] A. Abraham, “Evolutionary computation in intelli-
gent web management”, Evolutionary Computing in
Data Mining, Ghosh A. and Jain L.C. (Eds.), Studies
in Fuzziness and Soft Computing, Ch. 8, pp. 189-210,
Springer Verlag, 2004.

[2] A. Abraham and J. Thomas, “Distributed intrusion
detection systems: A computational intelligence ap-
proach, applications of information systems to home-
land security and defense”, Abbass H. A. and Essam
D. (Eds.), Idea Group Inc. Publishers, USA, Ch. 5,
pp. 105-135, 2005.

[3] J. P. Anderson, “Computer security threat mon-
itoring and surveillance”. Technical report, no.
79F296400, James P Anderson Co., Fort Washing-
ton, Pennsylvania, Apr. 1980.

[4] R. Beghdad, “Modelling and solving the intrusion de-
tection problem in computer networks”, Computers
& Security, vol. 23, issue 8, pp. 687-696, 2004.

[5] M. Brameier and W. Banzhaf, “A comparison of
linear genetic programming and neural networks in



International Journal of Network Security, Vol.4, No.3, PP.328–339, Mar. 2007 338

medical data mining”, IEEE Transactions on Evolu-
tionary Computation, vol. 5, no. 1, pp. 17-26, 2001.

[6] M. Brameier and W. Banzhaf, “Explicit control of di-
versity and effective variation distance in Linear Ge-
netic Programming”, in Proceedings of the fourth Eu-
ropean Conference on Genetic Programming, LNCS
2278, Springer-Verlag, 2002.

[7] L. Brieman, J. Friedman, R. Olshen, and C. Stone,
“Classification of regression trees”, Wadsworth Inc.,
1984.

[8] A. Boukerche, K. R. Lemos Juc, J. B. Sobral, and
M. Sechi Moretti Annoni Notare, “An artificial im-
mune based intrusion detection model for computer
and telecommunication systems”, Parallel Comput-
ing, vol. 30, issues 5-6, pp. 629-646, 2004.

[9] S. Chebrolu, A. Abraham, and J. P. homas, “Feature
deduction and ensemble design of intrusion detection
systems”, Computers & Security, vol. 24, issue 4, pp.
295-307, 2005.

[10] W. H. Chen, S. H. Hsu, and H. P. Shen, “Appli-
cation of SVM and ANN for intrusion detection”,
Computers & Operations Research, vol. 32, issue 10,
pp. 2617-2634, 2005.

[11] Y. Chen, A. Abraham, and J. Yang, “Feature de-
duction and intrusion detection using flexible neural
trees”, in Second IEEE International Symposium on
Neural Networks (ISNN 2005), LNCS 3498, pp. 439-
446, Springer-Verlag, 2005.

[12] D. Dasgupta, F. Gonzalez, K. Yallapu, J. Gomez,
and R. Yarramsettii, “CIDS: An agent-based intru-
sion detection system”, Computers & Security, vol.
24, issue 5, pp. 387-398, 2005.

[13] D. Denning, “An intrusion-detection model”, IEEE
Transactions on Software Engineering, vol. SE-13,
no. 2, pp. 222-232, 1987.

[14] O. Depren, M. Topallar, E. Anarim, and M. K. Ciliz,
“An intelligent intrusion detection system (IDS) for
anomaly and misuse detection in computer net-
works”, Expert Systems with Applications, vol. 29,
issue 4, pp. 713-722, 2005.

[15] C. Ferreira, “Gene Expression Programming: A new
adaptive algorithm for solving problems”. Complex
Systems, vol. 13, issue 2, pp. 87-129, 2001.

[16] C. Ferreira, “Genetic representation and genetic neu-
trality in gene expression programming”. Advances
in Complex Systems, vol. 5 no. 4, pp. 389-408, 2002.

[17] J. H. Friedman, “Multivariate adaptative regression
splines”, Annals of Statistics, vol. 19, 1991.

[18] T. D. Garvey and T. F. Lunt, “Model based intrusion
detection”, in Proceedings of the 14th National Com-
puter Security Conference, pp. 372-385, Oct. 1991.

[19] C. Grosan, A. Abraham, and S. Y .Han, “MEPIDS:
Multi-expression programming for intrusion detec-
tion system”, in International Work-conference on
the Interplay between Natural and Artificial Com-
putation, (IWINAC’05), LNCS 3562, pp. 163-172,
Springer-Verlag, 2005.

[20] R. Heady, G. Luger, A. Maccabe, and M. Servilla,
“The architecture of a network level intrusion detec-
tion system”. Technical report, Department of Com-
puter Science, University of New Mexico, 1990.

[21] K. Ilgun, “USTAT: A real-time intrusion detection
system for UNIX, master thesis”, University of Cal-
ifornia, Santa Barbara, 1992.

[22] W. Jiang, H. Song, and Y. Dai, “Real-time intru-
sion detection for high-speed networks”, Computers
& Security, vol. 24, issue 4, pp. 287-294, 2005.

[23] KDD Cup 1999 Intrusion detection data set:
http://kdd.ics.uci.edu/databases/kddcup99
/kddcup.data 10 percent.gz

[24] S. Kumar and E. H. Spafford, “An application of
pattern matching in intrusion detection”. Technical
Report CSD-TR-94-013, Purdue University, 1994.

[25] W. Lee, S. Stolfo, and K. Mok, “A data mining
framework for building intrusion detection models”,
in proceedings of the IEEE Symposium on Security
and Privacy, pp. 120-132, 1999.

[26] MIT Lincoln Laboratory.
http://www.ll.mit.edu/IST/ideval/

[27] S. Mukkamala, A. Sung, and A. Abraham, “Intru-
sion detection using ensemble of soft computing and
hard computing paradigms”, Journal of Network and
Computer Applications, Elsevier Science, vol. 28, is-
sue 2, pp. 167-182, 2005.

[28] M. Oltean and C. Grosan, “A cComparison of several
linear GP techniques, Complex Systems, vol. 14, no.
4, pp. 285-313, 2004.

[29] M. Oltean and C. Grosan, “Evolving evolutionary
algorithms using multi expression programming. in
Proceedings of The 7 thEuropean Conference on Ar-
tificial Life, Dortmund, Germany, pp. 651-658, 2003.

[30] S. Peddabachigari, A. Abraham, C. Grosan, and J.
Thomas, “Modeling intrusion detection system using
hybrid intelligent systems”, Journal of Network and
Computer Applications, 2006 (in press).

[31] P. A. Porras, “STAT: A state transition analysis tool
for intrusion detection”, Master’s Thesis, Computer
Science Dept., University of California, Santa Bar-
bara, 1992.

[32] F. Provost and T. Fawcett. “Robust classification for
imprecise environment”s, Machine Learning 42, pp.
203-231, 2001.

[33] V. Ramos and A. Abraham, “ANTIDS: Self orga-
nized ant based clustering model for intrusion de-
tection system”, in The Fourth IEEE International
Workshop on Soft Computing as Transdisciplinary
Science and Technology (WSTST’05), Japan, pp.
977-986, Springer-Verlag, 2005.

[34] G. T. Rohrmair and G. Lowe, “Using data-
independence in the analysis of intrusion detection
systems”, Theoretical Computer Science, vol. 340, is-
sue 1, pp. 82-101, 2005.

[35] C. Ryan, J. J. Collins, and M. O’Neill, “Gramatical
evolution: Evolving programs for an arbitrary lan-
guage”, in proceedings of the first European Work-



International Journal of Network Security, Vol.4, No.3, PP.328–339, Mar. 2007 339

shop on Genetic Programming, pp. 83-96, Springer-
Verlag, 1998.

[36] S. L. Scott, “A bayesian paradigm for designing in-
trusion detection systems”, Computational Statistics
& Data Analysis, vol. 45, issue 1, pp. 69-83, 2004.

[37] R. C. Summers, Secure computing: Threats and safe-
guards. McGraw Hill, New York, 1997.

[38] A. Sundaram, “An introduction to intrusion detec-
tion”. ACM Cross Roads, vol. 2, no. 4, Apr. 1996.

[39] H. S. Teng, K. Chen, and S. C. Lu, “Security audit
trail analysis using inductively generated predictive
rules”, in proceedings of the 11th National Confer-
ence on Artificial Intelligence Applications, Piscat-
away, pp. 24-29, Mar. 1990.

[40] V. N. Vapnik, “The Nature of Statistical Learning
Theory”, Springer-Verlag, 1995.

[41] C. Zhang, J. Jiang, and M. Kamel, “Intrusion de-
tection using hierarchical neural networks”, Pattern
Recognition Letters, vol. 26, issue 6, pp. 779-791,
2005.

[42] Z. Zhang, and H. Shen, “Application of online-
training SVMs for real-time intrusion detection
with different considerations”, Computer Communi-
cations, vol. 28, issue 12, pp. 1428-1442, 2005.

Ajith Abraham currently works as
a Professor under the South Korean
Government’s Institute of Information
Technology Assessment (IITA) Profes-
sorship program at Chung-Ang Uni-
versity, Korea and is a visiting re-
searcher at Rovira i Virgili Univer-
sity, Tarragona, Spain. His primary

research interests are in computational intelligence with
a focus on using evolutionary computation techniques
for designing intelligent paradigms. Application areas
include Web services, information security, Web intelli-
gence, financial modeling, multi criteria decision-making,
data mining etc. He has authored/co-authored over
200 research publications in peer reviewed reputed jour-
nals, book chapters and conference proceedings of which
three have won ’best paper’ awards. He is serving the
Editorial board of over a dozen International Journals
and has also guest edited 15 special issues for reputed
International Journals. He received PhD degree from
Monash University, Australia. More information at:
http://www.softcomputing.net

Crina Grosan currently works as
an Assistant Professor in the Com-
puter Science Department of Babes-
Bolyai University, Cluj-Napoca, Ro-
mania. She received her PhD degree
from Babes-Bolyai University, Roma-
nia. Her main research area is in Evo-
lutionary Computation, with a focus

on Evolutionary Multiobjective Optimization and appli-
cations and Genetic Programming. She is also interested

in Swarm Intelligence (Particle Swarm Optimization, Ant
Colonies Systems), Bioinformatics, Financial Modeling,
etc. Crina Grosan authored/co-authored over 60 papers
in peer reviewed international journals, proceedings of the
international conferences and book chapters. She is co-
author of two books in the field of computer science. She
is Managing Editor of the International Journal of Com-
putational Intelligence Research (IJCIR). Dr. Grosan is
the co-editor for the following books which will be pub-
lished by Springer Verlag, Germany: Swarm Intelligence
in Data Mining, Stigmergic Optimization, Hybrid Evolu-
tionary Systems.

Carlos Martin-Vide is, since 1992,
Professor and Head of the Research
Group on Mathematical Linguistics at
Rovira i Virgili University, Tarrag-
ona, Spain. His areas of expertise are
formal language theory, mathematical
linguistics, theoretical computer sci-
ence and biomolecular computing. His

volumes recently edited are: Where Mathematics, Com-
puter Science, Linguistics and Biology Meet (Kluwer,
2001, with V. Mitrana), Grammars and Automata for
String Processing: From Mathematics and Computer Sci-
ence to Biology, and Back (Taylor and Francis, 2003,
with V. Mitrana), Membrane Computing (LNCS 2933,
Springer, 2004, with G. Mauri, G. Paun, G. Rozenberg
and A. Salomaa), Formal Languages and Applications
(Springer, 2004, with V. Mitrana and G. Paun), and
Recent Advances in Formal Languages and Applications
(Springer, 2006, with Z. ?sik and V. Mitrana). He is (co-
)author of more than 255 papers in peer-reviewed jour-
nals and conference proceedings. Journals where his work
was published include: Acta Cybernetica (2); Acta Infor-
matica (4); BioSystems (2); Computational Linguistics;
Computers and Artificial Intelligence; Discrete Applied
Mathematics; Electronic Notes in Theoretical Computer
Science (2); Fundamenta Informaticae (6); Information
Processing Letters; Information Sciences; International
Journal of Computer Mathematics; International Jour-
nal of Foundations of Computer Science (2); International
Journal of Pattern Recognition and Artificial Intelligence;
Journal of Automata, Languages and Combinatorics (5);
Journal of Parallel and Distributed Computing; Journal
of Universal Computer Science (3); Linguistics and Phi-
losophy; Natural Computing (2); New Generation Com-
puting; Publicationes Mathematicae Debrecen (2); The-
oretical Computer Science (7). He published 28 papers
in LNCS volumes. He is the editor-in-chief of the jour-
nal Grammars (1998-), the chairman of the International
PhD School in Formal Languages and Applications (Tar-
ragona, 2001-), and the Chairman of the International
PhD School in Language and Speech Technologies (Tar-
ragona, 2005-).


