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Abstract. In this article we discuss a simple hash function based upon proper-
ties of a well-known combinatorial design called quasigroups. The quasigroups
are equivalent to the more familiar Latin squares and one of their most important
properties is that all possible element of certain quasigroup occurs with equal
probability. Actual implementations are based on look-up table implementation
of the quasigroup, which is unusable for large quasigroups. In contrast, presneted
hash function can be easily implemented. It allows us to compute hash function
without storing large amount of data (look-up table). The hash function compu-
tation is illustrated by experiments summarized in the last section of this paper.

1 Introduction

The need for random and pseudorandom sequences arises in many applications, e.g. in
modelling, simulations, and of course in cryptography. Pseudorandom sequences are the
core of stream ciphers. They are popular due to their high encryption/decryption speed.
Their simple and cheap hardware design is often preferred in real-world applications.
The design goal in stream ciphers is to efficiently produce pseudorandom sequences -
keystreams (i.e. sequences that possess properties common to truly random sequences
and in some sense are ”indistinguishable” from these sequences).

Hash functions map a large collection of messages into a small set of message digests
and can be used for error detection, by appending the digest to the message during the
transmission (the appended digest bits are also called parity bits). The error will be
detected if the digest of the received message, in the receiving end, is not equal to the
received message digest. This application of hash functions is only for random errors,
since an active spoofer may intercept the transmitted message, modify it as he wishes,
and resend it appended with the digest recalculated for the modified message.

With the advent of public key cryptography and digital signature schemes, cryp-
tographic hash functions gained much more prominence. Using hash functions, it is
possible to produce a fixed length digital signature that depends on the whole message
and ensures authenticity of the message. To produce digital signature for a message M ,
the digest of M , given by H(M), is calculated and then encrypted with the secret key
of the sender. Encryption may be either by using a public key or a private key algo-
rithm. Encryption of the digest prevents active intruders from modifying the message
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and recalculating its check sum accordingly. It effectively divides the universe into two
groups: outsiders who do not have access to the key of the encryption algorithm and
hence cannot effectively produce a valid checksum, and insiders who do have access to
the key and hence can produce valid checksums. We note that in a public key algorithm,
the group of insiders consists of only one member (the owner of the private key) and
hence the encrypted hash value uniquely identifies the signer. In the case of symmet-
ric key algorithms, both the transmitter and the receiver have access to the secret key
and can produce a valid encrypted hash for an arbitrary message and therefore, unique
identification based on the encrypted hash is not possible. However, an outsider cannot
alter the message or the digest.

In the study of hash functions, Information Theory and Complexity Theory are two
major approaches. The methods based on information theory provide unconditional
security — an enemy cannot attack such systems even if he/she has unlimited power.
This approach is generally impractical.

In the second approach, some assumptions are made based on the computing power
of the enemy or the weaknesses of the existing systems and algorithms, and therefore,
the security cannot be proven but estimated by the analysis of the best known attacking
algorithms and considering the improvements of the hardware and softwares. In other
words, hash functions based on complexity theory are computationally secure. In this
paper, we concentrate on the second approach.

1.1 Definitions

Definition 1. A function H() that maps an arbitrary length message M to a fixed length
hash value H(M) is a OneWay Hash Function (OWHF), if it satisfies the following
properties:

1. The description of H() is publicly known and should not require any secret infor-
mation for its operation.

2. Given M , it is easy to compute H(M).
3. Given H(M) in the rang of H(), it is hard to find a message M for given H(M),

and given M and H(M), it is hard to find a message M ′(�= M) such that H(M ′)
= H(M).

Definition 2. A function H() that maps an arbitrary length message M to a fixed length
hash value is a Collision Free Hash Function (CFHF), if it satisfies the following prop-
erties:

1. The description of H() is publicly known and should not require any secret infor-
mation for its operation.

2. Given M , it is easy to compute H(M).
3. Given H(M) in the rang of H(), it is hard to find a message M for given H(M),

and given M and H(M), it is hard to find a message M ′(�= M) such that H(M ′)
= H(M).

4. It is hard to find two distinct messages M and M ′ that hash to the same result
(H(M) = H(M ′)).
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2 Construction of Hashing Function Based on Quasigroup

Definition 3. Let Q be a nonempty set with one binary operation (∗). Then Q is said
to be a grupoid and is denoted by (Q, ∗).
Definition 4. A grupoid (Q, ∗) is said to be a quasigroup (i.e. algebra with one binary
operation (∗) on the set Q) satisfying the law:

(∀u, v ∈ Q)(∃!x, y ∈ Q)(u ∗ x = v ∧ y ∗ u = v).

This implies:

1. x ∗ y = x ∗ z ∨ y ∗ x = z ∗ x ⇒ y = z
2. The equations a ∗ x = b, y ∗ a = b have an unique solutions x, y for each a, b ∈ Q.

However, in general, the operation (*) is neither a commutative nor an associative op-
eration.

Quasigroups are equivalent to the more familiar Latin squares. The multiplication
table of a quasigroup of order q is a Latin square of order q, and conversely, as it was
indicated in [1,2,8], every Latin square of order q is the multiplication table of a quasi-
group of order q.

Definition 5. Let A = {a1, a2, . . . , an} be a finite alphabet, a k × n Latin rectangle
is a matrix with entries aij ∈ A, i = 1, 2, . . . , k, j = 1, 2, . . . , n, such that each row
and each column consists of different elements of A. If k = n we say a Latin square
instead of a Latin rectangle. Latin square is called reduced (or in standard form) if both
the first row and the left column are in some standard order, alphabetical order being
convenient.

All reduced Latin squares of order n are enumerated for n ≤ 10 as it is shown in [3].
Let Ln be the number of Latin squares of order n, and let Rn be the number of reduced
Latin squares of order n. It is easy to see that Ln = n!(n − 1)!Rn. The problem of
classification and exact enumeration of quasigroups of order greater than 10 probably
still remains unsolved. Thus, there are more then 1090 quasigroups of order 16 and if
we take an alphabet A = {0 . . . 255} (i.e. data are represented by 8 bits) there are at
least 256!255! . . .2! > 1058000 quasigroups.

Multiplication in quasigroups has important property: It is proved that each element
occurs exactly q times among the products of two elements of Q, q2 times among the
products of three elements of Q and, generally qt−1 among the products of t elements
of Q. Since there are qt possible ordered products of t elements of Q, this shows that
each element occurs equally often among these qt products (see [4]).

Definition 6. Let HQ() : Q → Q be projection defined as

HQ(q1q2 . . . qn) = ((. . . (a ∗ q1) ∗ q2 ∗ . . .) ∗ qn

Then HQ() is said to be hash function over quasigroup (Q, ∗). The element a is a fixed
element from Q.
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Example 1. Quasigroup of modular subtraction has following table representation:

0 3 2 1
1 0 3 2
2 1 0 3
3 2 1 0

The table above defines quasigroup because it satisfies conditions to be Latin Square.
Multiplication in the quasigroup is defined in following manner: a ∗ b = (a + 4 −
b) mod 4. It is obvious that the quasigroup is neither commutative (1∗2 = 3, 2∗1 = 1)
nor associative. Value of hash function is H2(0013) = (((2 ∗ 0) ∗ 0) ∗ 1) ∗ 3 = 2.

2.1 Sketch of Proof of Resistance to Attacks

Hash function based on quasigroup is iterative process which computes hash value (di-
gest) for message X = x1x2 . . . xn. Suppose that HQ(X) = d. Hash function is preim-
age resistant when it is ”impossible” to compute from given digest source message X .
The digest d should be factorized into message Y = y1y2 . . . yn. In the first step we
can divide digest d into two parts y1 and α1, where d = y1 ∗ α1. In the second step
value α1 needs to be divided into y2 and α2 (α1 = y2 ∗ α2) and so for each element
yi, 1 ≤ i ≤ n. Because each yi has a same probability of occurrence among products
of Q, |Q|n possible choices should be checked to obtain message Y .

Definition 7. Quasigroups Q and R are said to be homotopic, if there are permutations
satisfying the law: (∀u, v ∈ R)(u ∗ v = π(ω(u) ∗ ρ(v))).

We can imagine homotopy of quasigroups as permutation of rows and columns of quasi-
group’s multiplication table.

Example 2. Table of quasigroup, which is homotopic with quasigroup of modular sub-
traction:

0 3 2 1
2 1 0 3
1 0 3 2
3 2 1 0

The table was created from table of modular subtraction. The second and the third
row were exchanged. Permutations π, ρ are identities and ω = [0213]. For example
1 ∗ 0 = ω(1) ∗ 0 = 2 ∗ 0 = 2.

This example can be considered as a method how to construct new quasigroups. In fol-
lowing text we will use quasigroups homotopic with quasigroup of modular subtraction.
Three random permutations will be generated and table will be used to modify original
table. Such quasigroup we call ”table quasigroup”. Disadvantage of this method is huge
space complexity (n2 elements must be stored).

Homotopy gives us possibility to compute result of multiplication without table.
Three functions must be chosen to calculate permutations π, ρ, ω. Then the multipli-
cation is defined as follows: a ∗ b = π((ω(a) + n − ρ(b)) mod n) .
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A sequence of n elements were divided into several parts; these were rotated in
various directions and exchanged among themselves. Hereafter presented function P1
compute one of these permutations i.e. P1(x) = ω(x). Two other permutations are
implemented in the same way.

const unsigned int cQuasiGroupA2::P1(unsigned int x) const
{

unsigned int Dimension2 = m_Dimension / 2;
if (x < Dimension2 * 2)
{

if (x & 1)
x = 2 * ((x / 2 + 1) % Dimension2) + 1;

else
x = 2 * ((x / 2 + Dimension2 - 1) % Dimension2);

}
return x;

}

This enables us to work with large quasigroups. Works that are already known use
quasigroups of small order only, or only a small parts of certain quasigroup are there
used mainly as a key for Message Authentication Code [3]. These are represented as
a look-up table in main memory. Hypothesis mentioned above will be tested in next
section.

3 Experimental Results

A simple application was created to verify our hypothesis and expectations. Inputs to the
application were sets of distinct words, which were extracted from particular text file. The
first input was file bible from Canterbury Corpus [5] (section Large files) and it was about
4 megabytes long. About 10000 distinct words were extracted from this file. The sec-
ond was file latimes from TREC document corpus (see http://trec.nist.gov).
The file contained Los Angeles Times volumes 1989 and 1990. And it was about 450
megabytes long. We extracted 200000 distinct words from this text file.

To get statistical data about distribution of words in range of hash values and other
properties imaginary hash table have been implemented and values in the table were
measured. We observed several parameters:

1. divergences in numbers of words in slots for given size of hash table between our
hash function and uniform distribution of words in table,

2. distribution of lengths of slots,
3. how many bits are changed, when one bit in input has been inverted,
4. probability of bits alternation in given position, when one bit in input has been

inverted.
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3.1 Distribution of Words in Slots

The distribution of words in slots of hash table is figured in charts 1, 2. It can be seen
from charts 1(a) and 1(b) that distribution of words in slots of imaginary hash table
is quite uniform, both for table quasigroup and for analytic one. But in chart 2 there
are differences between table and analytic quaisgroup. Moreover analytic results have
regular shape. This error is caused by constant parameters of functions that compute
permutations in analytic quasigroup.
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Fig. 1. Distribution of words in slots for file bible, hash size 997
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Fig. 2. Distribution of words in slots for file latimes, hash size 5003

3.2 Distribution of Lengths of Slots

We can observe good correspondence between distribution of table quasigroup and an-
alytic quasigroup in chart 3(a) for the file bible. For file latimes there is absolute diver-
gence in chart 3(b).

3.3 Probability of Change of Particular Number of Bits

We focus on influence of inputs change on resultant value of hash function. Step by step
every bit in each input word was inverted and value of hash function was computed.
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Fig. 3. Distribution of slots’ length
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Fig. 4. Probability of change of particular number of bits

Then Hamming distance between hash values for original word and modified one was
measured. It can be seen from chart 4 that both distribution curve has the same shape
and they are very close together. It is interesting especially for chart 4(b) with respect of
bad characteristic of slots distribution in chart 3(b). Next we perform experiments with
analytic quasigroup of order 216 and 232 i.e. for 16 and 32 bit long numbers. Result of
the experiment is given in chart 5.

3.4 Probability of Bits Alternation in Given Position

Alternations of bits in specific positions in result of hash function were observed. The
experiment runs with the same conditions as previous experiment, but we kept track
to positions of changed bits. Only minor errors can be seen (chart 6) between table
quasigroup and analytic quasigroup. The changes are uniformly distributed over all bits
in resultant hash value.
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Fig. 5. Probability of change of particular number of bits
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Fig. 6. Probability of particular bit’s change

4 Conclusion and Future Works

We presented hash function based on non-associative algebraic structures. This work is
continuation of our paper [6]. The presented hash function can be easily implemented.
Comparison between look-up table and analytic quasigroup implementation is given.
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Analytic quasigroup has some faults in it properties, but there is no need to store large
table. For real usage arithmetic of long numbers (i.g. 512 bits) must be adopted. Non-
associative structure - neofield - could be incorporated in our future works.
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Proceedings of Velikonočnı́ kryptologie, Brno, pp. 1–8 (2002)
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