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Abstract In many resource allocation problems, econ-
omy efficiency must be taken into consideration togeth-
er with social equality, and price rigidities are often
made according to some economic and social needs. We
investigate the computational issues of dynamic mecha-
nisms for selling multiple indivisible objects under price
rigidities. We propose a multiple agents protocol and
algorithm with polynomial time complexity that can
achieve the over-demanded sets of items, and then in-
troduce a dynamic mechanism with rationing to discov-
er constrained Walrasian equilibria under price rigidi-
ties in polynomial time. We also address the compu-
tation of buyers’ expected profits and items’ expected
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prices, and discuss strategical issues in the sense of ex-
pected profits.
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1 Introduction

Problem of allocating resources among selfish agents
has been a well-established research theme in economic-
s and recently becomes an emerging research topic be-
cause Artifact Intelligence (AI) methodologies can pro-
vide computational techniques [25,26,31] to the balanc-
ing of computation tractability and economic (or soci-
etal) needs in these problems [7,23].

Dynamic mechanisms for resource allocation are trad-
ing mechanisms for discovering market-clearing prices
and equilibrium allocations based on price adjustment
processes [31,1,14]. Assume a seller wishes to sell a set
of indivisible items to a number of buyers. The seller
announces the current prices of the items and the buy-
ers respond by reporting the set of items they wish to
buy at the given prices. The seller then calculates the
over-demanded set of items and increases the prices of
over-demanded items. This iterative process continues
until all the selling items can be sold at the prices at
which each buyer is assigned with items that maximize
her personal net benefit.

Different from one-shot combinatorial auctions [11],
the main issue of a dynamic mechanism is whether the
procedure can lead to an equilibrium state (Walrasian
equilibrium) at which all the selling items are effectively
allocated to the buyers (equilibrium allocation) and the
price of items gives the buyers their best values [20,28,
13].
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Most of the discussions on the issues of dynam-
ic mechanisms are based on market models in which
there does not exist price rigidities. In fact, “good” al-
locations must look after both sides economy efficiency
and social equality, and price rigidities may play a key
role in some of these problems. For instance, in an es-
tate bubble period, housing cost is unbearable for most
of the members of society. The government may need
to allocate some housing resources (whose prices are
not completely flexible but restricted under some price
rigidities) to middle-income earners. On one hand, the
lower bound prices can be made according to some basic
economic requirements (e.g., construction costs); on the
other hand, the upper bound prices1 should be made
according to some realistic social foundation (e.g., av-
erage income level or pay ability). It is well-known that
a Walarasian equilibrium exists in the economy when
there are no price rigidities. In the case of price restric-
tions, a Walrasian equilibrium may not exist since the
equilibrium price vector may not be admissible.

Talman and Yang studied the equilibrium allocation
of heterogeneous indivisible items under price rigidities,
and proposed the concept of constrained Walrasian e-
quilibria [29]. A constrained Walrasian equilibrium con-
sists of a price vector p, a rationing system R, and a
(constrained) equilibrium allocation π [20] s.t. p obeys
the price rigidities, and π assigns each buyer an item
(permitted by R) that maximizes her personal net ben-
efit at p. They also proposed two dynamic auction pro-
cedures that produce constrained Walrasian equilibria.
However, the computational issues of these procedures
have not been touched.

In this paper, we present a polynomial algorithm
that can be used to find over-demanded sets of item-
s, and then introduce a dynamic mechanism (multiple
agents price rigidities, abbr. MAPR) with rationing to
discover constrained Walrasian equilibria under price
rigidities in polynomial time. In MAPR, buyers com-
pete with each other (with the help of the seller) on
prices of items for multiple rounds. In each round, the
seller announces the current price vector (initially, the
lower bound price vector) of the items that remain, then
the buyers respond by reporting the set of resources
they wish to buy, then the seller computes a minimal
over-demanded set Xmin of the items. If Xmin = ∅ then
the final allocation is computed by the RM (Renewing-
Matching) subroutine and MAPR stops. Otherwise if
all the prices of the items in Xmin are less than their
upper bounds then the seller increases them; else an

1 Note that since upper bound prices are often set for the sake
of equality between social members (who have some but limited
pay ability), they generally accompany a limit to the number of
resources one member can get.

item a ∈ Xmin (whose price is on its upper bound) is
picked and the buyers who only demand some items
(including a) in Xmin draw lots for the right to buy a.
Since MAPR’s execution process is nondeterministic,
we define the concepts of buyers’ expected profits and
items’ expected prices, and consider strategical issues
(in the sense of expected profit) in MAPR.

Here are main contributions of our work:

– We address the computational problems of dynamic
auction proposed by Talman and Yang [29], where
these problems have not been touched.

– We complete the proof about the existence of con-
strained Walrasian equilibrium. And a multiple a-
gents under price rigidities algorithm is proposed to
obtain the final allocation and several lemmas to
prove the criteria required in constrained Walrasian
equilibrium.

– We define the “expected profits” and “expected prices”
and discuss strategical issues.

The remainder of the paper is organized as follows.
Related works about allocating resources and its algo-
rithms are reviewed in Section 2. In Section 3 some
basic notions and examples relating to our work are
briefly explained, especially the constrained Walrasian
equilibrium. Then, we represent demand situations with
bipartite graphs. In Section 4, we address the computa-
tion of minimal over–demanded sets of items. Then our
MAPR algorithm is presented. We prove formally that
it yields a constrained Walrasian equilibrium in poly-
nomial time. In Section 5, we consider strategical issues
in MAPR. Finally conclusions are given in Section 6.

2 Related Works

The problem of allocating resources among multiple a-
gents relates to multiple disciplines, including computer
science, artificial intelligence, microeconomics, compu-
tational social choice, psychology [2,23,12]. Approach-
es to resource allocation can be classified according to
three dichotomies: (1) centralized or decentralized ap-
proaches; (2) divisible or indivisible objects; (3) allow-
ing money transfers or not. (2) and (3) need no explana-
tion. In centralized approaches (e.g., the approach given
in [22], and combinatorial auction discussed in [11]), a-
gents are required to fully reveal their preferences to
a central authority, who computes the final allocation.
In decentralized approaches (e.g., in [1], [9]), the final
allocation is determined (possibly with the help of a
central authority) by agents’ interactions that reveal
only a part of their preferences.

Many centralized approaches to allocating indivis-
ible goods have been proposed. Guo and Deligkas [15] s-
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tudy probabilistic single-item second-price auctions where
the item is characterized by a set of attributes. The
auctioneer chooses to reveal only a subset of these at-
tributes to the bidders to create thicker market, which
may lead to higher revenue. Because designing revenue-
maximizing combinatorial auctions is very hard even
for two bidders and two items for sale, Likhodedov and
Sandholm [21] focus on designing suboptimal auction
mechanisms which yield high revenue and propose t-
wo approaches to constructing approximately optimal
combinatorial auction. In addition to economy efficien-
cy, social equality and fairness are also discussed. Hart-
line and Yan [16] consider profit maximizing mechanism
design in position auctions and single-minded combina-
torial auctions and consider the fairness constraint of
envy-freeness in addition to incentive compatible.

However, Bouveret and Lang [3] point that central-
ized approaches have two drawbacks: (a) elicitation pro-
cess and winner determination algorithm can be very
expensive; (b) agents have to reveal their full prefer-
ences, which they might be reluctant to do. Ausubel
[1] proposes an efficient decentralized approach for auc-
tioning multiple heterogeneous commodities. Ausubel
claims that the proposed mechanism yields an efficient
allocation as from a Vickrey-Clarke-Groves mechanism,
but it offers advantages of simplicity and transparen-
cy. More importantly, it maintains privacy in the sense
that buyers avoid the need to report full preferences
one-shot to the auctioneer. Sun and Yang [28] propose
another decentralized approach called a double-track
procedure for efficiently allocating multiple heteroge-
neous indivisible items in two distinct sets to some buy-
ers. In each round of the process, the prices of items in
one set increase and those of items in the other set
decrease. Zhang et al. [31] address computational is-
sues of this procedure and propose an algorithm that
could find a Walrasian equilibrium in polynomial time.
Some decentralized approaches to allocating indivisible
goods in which money transfers are not allowed, have
also been proposed recently. Brams [4] adapted a cake-
cutting protocol to the allocation of indivisible goods,
and the protocol is typically designed for the cases when
there are only two agents. Bouveret and Lang [3] study
a sequential elicitation-free protocol. In the protocol,
agents take turns to pick their favorite goods accord-
ing to a designated sequence. Kalinowski et al. study
the strategy behavior [18][19] and what is the “best”
sequence [17] of sequential elicitation-free protocol.

There are some important research works (e.g., [5],
[6], [8], [10]) that discuss how to allocate divisible goods
among multiple agents. More information can be seen
in [30] and Procaccia’s survey [24].

Table 1 Dichotomies of approaches to resource allocation

Allowing Centralized approaches Decentralized approaches

money

transfers or

not

Divisible
objects

Indivisible
objects

Divisible
objects

Indivisible
objects

No money
transfer

[5], [8], [10] [22] [6], [24] [3], [4], [9],
[17], [18],
[19]

Allowing
money
transfers

[30] [11], [15],
[16], [21]

N/A [1], [9],
[28], [31],
[29]∗ and
our work∗

Table 1 clusters the related work according to the
three dichotomies (i.e., centralized or decentralized ap-
proaches, divisible or indivisible objects, and allowing
money transfers or not). Note that only [29] and our
work consider price rigidities.

3 Problem and Examples

We formulate the problem and provide some examples
relevant to our work, especially the constrained Wal-
rasian equilibrium.

3.1 Constrained Walrasian Equilibrium

Consider a market situation where a seller wishes to sell
a finite set X of indivisible items to a finite number of
buyers N = {1, 2, . . . , n}. The item o ∈ X is a dummy
item which can be assigned to more than one buyer.
Items (eg., houses or apartments) in X \ {o} may be
heterogeneous.

A price vector p ∈ ZX
+ assigns a non-negative in-

teger to each a ∈ X and pa is the price of a un-
der p. It is required that pa is not completely flexible
and restricted to an interval [p

a
,pa] s.t. pa

,pa ∈ Z+,
p
a

≤ pa, and 0 = p
o

= po. We say p and p as
the lower and upper bound price vectors. P = {p ∈
ZX
+ |(∀a ∈ X) p

a
≤ pa ≤ pa} is called the set of

admissible price vectors. Each i ∈ N has an integer
value function, i.e., ui : X → Z+. ui(a) is i’s valua-
tion to item a. We assume ui is i’s private information,
ui(o) = 0, and i can pay maxa∈X pa units of money.
We say E = 〈N,X, {ui}i∈N 〉 is an economy.

A rationing system is a function R : N×X → {0, 1}
s.t. R(i, o) = 1 for every i ∈ N . R(i, a) = 1 means that
buyer i is allowed to demand item a, while R(i, a) = 0
means that i is not allowed to demand a. At p ∈ P
and rationing system R, the indirect utility Vi(p, R)
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and constrained demand Di(p, R) of buyer i is given
by: Vi(p, R) = max{ui(a)−pa|a ∈ X and R(i, a) = 1},
and Di(p, R) = {a ∈ X|R(i, a) = 1 and ui(a) − pa =
Vi(p, R)}. An allocation of X is a function π : N → X
s.t. π(i) *= π(j) if j *= i and π(i) ∈ X \ {o}. π is an
equilibrium allocation if π(i) ∈ Di(p, R) for all i ∈ N .

〈p, R,π〉 is a constrained Walrasian equilibrium if

1. p ∈ P , R is a rationing system,
2. π is an equilibrium allocation,
3. pa = p

a
if π(i) *= a for all i ∈ N ,

4. pa = pa and π(i) = a for some i ∈ N if R(j, a) = 0
for some j ∈ N , and

5. a ∈ Di(p, R′) if R(i, a) = 0, where R′(j, b) = R(j, b)
for all 〈j, b〉 ∈ N ×X except R′(i, a) = 1.

Conditions 1 and 2 need no explanation. Condition
3 says that if the price of an item is greater than its
lower bound then it must be assigned to some buyer.
Condition 4 states that if an buyer is not allowed to
demand some items then the item must be assigned
to another buyer at its upper bound price. Condition
5 says that if an buyer is allowed to demand an item
which she was not allowed to demand, then she will de-
mand the item. We claim that constrained Walrasian
equilibrium is a natural generalization of Walrasian e-
quilibrium under price rigidities. All the five conditions
above make a balance between efficiency and equality.

The following example is modified from the one giv-
en in [29]. It illustrates the notions introduced in this
section and will be used throughout the paper.

Example 1 Let E = 〈N,X, {ui}i∈N 〉 be an economy
such that N = {1, 2, 3, 4, 5}, X = {o, a, b, c, d}, and
buyers’ values are given in Table 2; price vector p =
(0, 5, 4, 4, 7); and π be an allocation of X such that π(1) =
o, π(2) = c, π(3) = b, π(4) = a, and π(5) = d.
Suppose the lower and upper bound price vectors are
p = (0, 5, 4, 1, 5), and p = (0, 6, 6, 4, 7), respectively. So
p is an admissible price vector. Let R be a rationing
system such that R(i, x) = 1 for all 〈i, x〉 ∈ N ×X ex-
cept that R(3, c) = R(1, c) = 0. For each buyer i ∈ N ,
Vi(p, R) and Di(p, R) are also shown in Table 2. Obvi-
ously, 〈p, R,π〉 is a constrained Walrasian equilibrium.

3.2 Demand Situation and Maximum Consistent
Allocation

Given an economy E = 〈N,X, {ui}i∈N 〉, we call D =
(Di)i∈N a demand situation of E if there is a price vec-
tor p and a rationing system R such thatDi = Di(p, R)
for all i ∈ N . An allocation π is consistent with D if
π(i) ∈ Di ∪ {o} for all i ∈ N . π is maximum if |{i ∈

Table 2 Values, indirect utilities, and constrained demand

buyer i ui(o) ui(a) ui(b) ui(c) ui(d) Vi(p, R) Di(p, R)

1 0 4 3 5 7 0 {o,d}
2 0 7 6 8 3 4 {c}
3 0 5 5 8 7 1 {b}
4 0 9 4 3 2 4 {a}
5 0 6 2 4 10 3 {d}

N |o *∈ Di and π(i) *= o}| ≥ |{i ∈ N |o *∈ Di and π′(i) *=
o}| for every allocation π′ consistent with D.

D can be represented as a bipartite graph BG(D) =
〈N ′ ∪ X ′, E〉 where N ′ = {i ∈ N |o *∈ Di}, X ′ =⋃

i∈N ′ Di, and E = {{i, a}|i ∈ N ′, a ∈ Di}. A match-
ing in BG(D) is a subset M of E s.t. e ∩ e′ = ∅ for all
e, e′ ∈ M with e *= e′. M is maximum if |M ′| ≤ |M | for
each matching M ′.

It is not hard to see that a matching M in BG(D)
determines an allocation consistent with D. πM denotes
the allocation determined by M , that is, πM (i) = a if
∃{i, a} ∈ M , and πM (i) = o otherwise. Suppose M is
maximum, then πM is maximum and it is easy to find
that: there exists an equilibrium allocation ⇔ |M | =
|{i ∈ N |o *∈ Di}| ⇔ πM is an equilibrium allocation.

In fact, to find a maximum matching in a bipar-
tite graph is a pure combinatorial optimization prob-
lem, which can be addressed in polynomial time. Schri-
jver [27] presents the matching augmenting algorith-
m Ma, which takes a bipartite graph G = 〈V , E〉 and
a matching M in G as input, and outputs a match-
ing Ma(G,M) = M ′ s.t. |M ′| ≥ |M | and

⋃
e∈M ′ e ⊇⋃

e∈M e in time O(|E|). So a maximum matching can
be found in time O(|V||E|) (as we do at most |V| it-
erations), i.e., O(|N ||X|min(|N |, |X|)). In the follow-
ing discussion, M̂D denotes the maximum matching of
BG(D) found by this way.

Example 2 See the economy given in Example 1. Let
price vector p = (0, 5, 4, 3, 5) and R be the rationing
system such that R(i, a) = 1 for all 〈i, a〉 ∈ N×X. Then
buyers’ constrained demands at p and R are: D1(p, R) =
{c, d}, D2(p, R) = D3(p, R) = {c}, D4(p, R) = {a},
D5(p, R) = {d}. Let D = (Di(p, R))i∈N . M̂D = {{1, c},
{4, a}, {5, d}}.

4 Mechanism for Allocating Resources under
Price Rigidities

4.1 Over-demanded set of items

What can lead to non-existence of equilibrium alloca-
tions? This is a key issue that we need to consider.
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Given a demand situation D = (Di)i∈N , a set of
real items X ′ ⊆ X \ {o} is over-demanded in D, if
the number of buyers who demand only items in X ′

is strictly greater than the number of items in X ′, i.e.,
|{i ∈ N |Di ⊆ X ′}| > |X ′|; X ′ is not under-demanded,
if the number of buyers who demand some items in
X ′ is not less than the number of items in X ′, i.e.,
|{i ∈ N |Di∩X ′ *= ∅}| ≥ |X ′|. An over-demanded setX ′

is minimal if no strict subset of X ′ is over-demanded.
We can get Lemma 1 directly based on these definitions.

Lemma 1 Let X ′ ⊆ X \ {o} is over-demanded. Then
for each a ∈ X ′, either there exists a minimal over-
demanded set X ′′ ⊆ X ′ s.t. a *∈ X ′′, or a ∈ X ′′ for
every minimal over-demanded set X ′′ ⊆ X ′.

Theorem 1 answers the question proposed in the
beginning of this section.

Theorem 1 There exists an over-demanded set of item-
s in D = (Di)i∈N if and only if there does not exist an
equilibrium allocation.

Proof Sufficiency is obvious. Let us prove necessity. Sup-
pose there does not exist an equilibrium allocation. Let
M = M̂D and N ′ = {i ∈ N |o *∈ Di}. Then |M | = |N ∩⋃

e∈M e| < |N ′|. Pick a buyer i from N ′ \N ∩
⋃

e∈M e.
We construct a sequence 〈X0, N0〉, 〈X1, N1〉, · · · as fol-
lows:

– X0 = Di, N0 = {j ∈ N |(∃a ∈ X0){j, a} ∈ M};
– Xk+1 =

⋃
j∈Nk

Dj ; and Nk+1 = {j ∈ N |(∃a ∈
Xk+1) {j, a} ∈ M}.

Pick any k ≥ 0 and a ∈ Xk. Suppose there does not
exist j ∈ N such that {j, a} ∈ M . Then there is an M -
augmenting path [27] from a to i, i.e., M is not max-
imum, contradicting the fact that M is maximum. So
for all k ≥ 0 and a ∈ Xk, there exists j ∈ N such that
{j, a} ∈ M . Consequently,

1. Xk ⊆ Xk+1 ⊆ X, Nk ⊆ Nk+1 ⊆ N for all k ≥ 0;
2. if Xk+1 = Xk then Xk+l = Xk and Nk+l = Nk for

all k, l ≥ 0.

So there must exist K ≥ 0 s.t. X0 ⊂ · · · ⊂ XK =
XK+1 = · · · . For each b ∈ XK , b is assigned to only one
buyer in NK at πM . And for each j ∈ NK , Dj ⊆ XK

and j is assigned with only one item in XK at πM . So
|XK | = |NK |. Consequently, |{i ∈ N |Di ⊆ XK}| ≥
|NK ∪ {i}| = |NK | + 1 = |XK | + 1 > |XK |. So XK is
an over-demanded set of items in D.

To find a minimal over-demanded set of items, we
develop the MODS algorithm shown in Algorithm 1.
Given a demand situation D, and M̂D s.t. |M̂D| < |{i ∈
N |o *∈ Di}|, MODS returns a minimal over-demanded

ALGORITHM 1: MODS (minimal over-
demanded set) algorithm

Input: (Di)i∈N , M̂D
Output: Xmin

1 D ← (Di)i∈N ;

2 M ← M̂D;
3 Pick i from {i ∈ N |o #∈ Di} \

⋃
e∈M e;

4 X′′ ← Di, X′ ← ∅;
5 while (X′′ #= ∅) do
6 N ′ ← {j ∈ N |(∃a ∈ X′′){j, a} ∈M};
7 X′ ← X′ ∪X′′;
8 X′′ ←

⋃
j∈N′ Dj \X′;

9 end
10 Xmin ← ∅, X′′ ← X′;
11 for ∀a ∈ X′ do
12 X′′ ← X′′ \ {a};
13 N ′ ← {i ∈ N |Di ⊆ Xmin ∪X′′};
14 D′ ← (Di)i∈N′ ,k ← |M̂D′ |;
15 if k = |N ′| then
16 Xmin ← Xmin ∪ {a};
17 end

18 end
19 return Xmin;

set of items Xmin. The basic idea of MODS is to gen-
erate an over-demanded set X ′ firstly (see lines 3–8 in
Algorithm 1), and then (according to Lemma 1) to find
a minimal over-demanded set Xmin ⊆ X ′ (see lines 10–
18 in Algorithm 1).

The correctness of algorithmMODS is directly from
Lemma 1 and the proof of Theorem 1. Let BG(D) =
〈V , E〉. We can find easily the facts as follows.

1. In order to generate an over-demanded set X ′ (lines
3–8 in Algorithm 1), MODS only visits edges in E .
For each e ∈ E , e can be visited once at most.

2. |X ′| ≤ |M̂D| ≤ min(|N |, |X|), andBG(D′) ⊆ BG(D)
(see line 14).

Because |E| ≤ |N ||X| and the complexity of M̂D is
in O(|N ||X|min(|N |, |X|)), the overall complexity of
MODS (D, M̂D) is in O(|N ||X|(min(|N |, |X|))2).

Example 3 See D and M̂D described in Example 2. It
is easy to find that |M̂D| < |{i ∈ N |o *∈ Di}|. We ap-
ply MODS algorithm to (D, M̂D). Figure 1 and Figure
2 provide a graphical illustration of the application. D
is represented as a bipartite, and the bold lines denote
the maximum matching M̂D. Firstly, an over-demanded
set X ′ = {c, d} is found. And then a minimal over-
demanded set Xmin = {c} is found.

4.2 MAPR Algorithm

In this subsection, we present a polynomial mechanism
for resource allocation under price rigidities (MAPR).
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1 2 3 4 5

a c d

Agent 2 demands item c. But the matching
does not satisfy her. (see lines 3-4 of
Algorithm 1)

1 2 3 4 5

c da

The maximum matching assigns c to agent 1.
Agent 1 will not be unhappy if she is assigned with
item d instead. (see lines 4-8 of Algorithm 1)

1 2 53 4

c da

The maximum matching assigns d to agent 5.
And agent 5 does not demand any item that
has not been considered before. So {c, d}
is over-demanded. (see lines 5-8 of Algorithm 1)

Fig. 1 How does MODS find an over-demanded set

1 2 3 4 5

a c d

Picked c out of X ′′. Then X ′′ is not
over-demanded any more. So any
minimal over-demanded set Xmin

contains c.

1 2 3 54

c da

X ′′ = {c, d} is over-demanded
(see line 10 of Algorithm 1)

(see lines 11-18 of Algorithm 1)

1 4 52 3

a dc

Picked d out of X ′′. X ′′ is still
over-demanded. So there is a
minimal over-demanded set
Xmin that does not contain d.

Fig. 2 How does MODS find a minimal over-demanded set

Its basic idea is to eliminate over-demanded sets of
items by increasing the prices of over-demanded item-
s or rationing an over-demanded item whose price has
reached its upper bound.

Talman and Yang [29] provide two dynamic pro-
cedures that produce constrained Walrasian equilibri-
um. But it does not address the computation issues,
and the third condition of constrained Walrasian e-
quilibrium cannot be guaranteed either. In order to
make sure that all the items whose prices exceed their
lower bound prices will be sold (the third criterion of
constrained Walrasian equilibrium), the RM subrou-
tine shown in Algorithm 3 is called in Step 9 of Al-
gorithm 2. Given a demand situation D = (Di)i∈N ,
a partial matching M consistent with D, the curren-

ALGORITHM 2: MAPR algorithm

1 The seller ϕ announces the set X of items to allocate, and
sets p0 ← p, M0 ← ∅, N ′ ← N . Each buyer i ∈ N sets
Ri[a]← 1 for each item a ∈ X. Let t← 0.

2 ϕ sends pt and “Report your demand.” to each i ∈ N ′.
3 Each i ∈ N ′ computes and sends Di = {a ∈ X|Ri[a] =

1 and ui(a)− pt
a = max{ui(b)− pt

b|Ri[b] = 1}} to ϕ.
4 ϕ computes N ′′ = {i ∈ N ′|Di ∩

⋃
e∈Mt e #= ∅}. If N ′′ = ∅

then go to Step (6). ϕ sends “Sorry, items in
D′

i = Di ∩
⋃

e∈Mt e have been sold. Please report your
new demand.” to each i ∈ N ′′, and sets N ′ ← N ′′.

5 Each i ∈ N ′ sets Ri[a]← 0 for all a ∈ D′
i. Go to Step (3).

6 Let N∗ = N \
⋃

e∈Mt e and D∗ = (Di)i∈N∗ . ϕ computes

M̂D∗ . If |M̂D∗ | = |{i ∈ N∗|o #∈ Di}| then go to Step (9). ϕ
computes Xmin = MODS(D∗, M̂D∗ ).

7 ϕ computes X = {a ∈ Xmin|pt
a = pa}. If X = ∅ then ϕ

sets N ′ ← N∗, Mt+1 ←Mt, pt+1
a ← pt

a + 1 for all
a ∈ Xmin, and pt+1

a ← pt
a for all a ∈ X \Xmin. Let

t← t+ 1. Go to Step (2).
8 ϕ picks an item a from X and asks the buyers in

{i ∈ N∗|a ∈ Di ⊆ Xmin} to draw lots for the right to buy
a. Let i be the winning buyer. ϕ sets
Mt+1 ←Mt ∪ {{i, a}}, N ′ ← N∗ \ {i} and pt+1 ← pt.
Let t← t+ 1. Go to Step (2).

9 ϕ computes M∗ ←Mt ∪RM((Di)i∈N ,M t,pt,p) and

then announces pt and πM∗
are the final price vector and

allocation. MAPR stops.

ALGORITHM 3: RM (Renewing-Matching) al-
gorithm
Input: (Di)i∈N ,M,p,p

Output: M̃
1 X′ ← {a ∈ X \

⋃
e∈M e|pa > p

a
};

2 N ′ ← {i ∈ N \
⋃

e∈M e|Di ∩X′ #= ∅};
3 D′ ← (Di ∩X′)i∈N′ ;

4 M ′ ← M̂D′ ;
5 N∗ ← N \

⋃
e∈M e;

6 〈V, E〉 ← BG((Di)i∈N∗ );
7 M ′′ ←M ′ ∩ E;
8 while (Ma(〈V, E〉,M ′′) #= M ′′) do
9 M ′′ ←Ma(〈V, E〉,M ′′);

10 end

11 M̃ ←M ′′ ∪ {e ∈M ′|e ∩
⋃

e′∈M′′ e′ = ∅};
12 return M̃ ;

t price vector p, and the lower bound price vector p,

RM returns a matching M ′ such that (1) πM∪M ′
is

an equilibrium allocation, (2) M ∩ M ′ = ∅, and (3)
{a ∈ X \

⋃
e∈M e|pa > p

a
} ⊆

⋃
e∈M ′ e.

The rough framework of MAPR is illustrated in Fig-
ure 3. Observing MAPR and RM subroutines, we can
find that:

– computation of each step is polynomial in |N | and
|X|;

– for each t ≥ 0, the number of the loops consisting of
Steps 3–5 in Algorithm 2 is not more than |X|; and
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Seller announces the set of items
to sell and the initial prices

START

Buyers report
their demand

Seller computes maximum
consistent allocation

Is there equilibrium

allocation?

Buyers draw lot
to get the item

YES

NO

Seller computes
MODS Xmin

YES
Is there an item

reaching Upper

Bound Price?

NO

Prices of all
items in Xmin

increase 1

RM procedure
gets the final allocation

STOP

Fig. 3 Framework of Algorithm MAPR

– the number of the loops consisting of Steps 2–8 is
not more than

∑
a∈X

(pa − p
a
).

So MAPR always terminates and is polynomial in |N |,
|X|, and

∑
a∈X

(pa − p
a
).

In order to prove the correctness of MAPR and
RM, we will first give some definitions and provide
three lemmas, then we will prove that MAPR can lead
to a constrained Walrasian equilibrium with the help
of these three lemmas. In the following discussion, we
suppose that MAPR terminates at some time T ≥ 0;
pt, M t, Rt (Rt(i, a) = Ri[a] for all 〈i, a〉 ∈ N × X,
where Ri is the vector kept by buyer i at time t),
and (Dt

i)i∈N denote the price vector, partial match-
ing that has been made so far, rationing system, and
demand situation at time 0 ≤ t ≤ T , respectively. Let
Xt = {a ∈ X \

⋃
e∈Mt e|pt

a > p
a
} and N t = {i ∈

N \
⋃

e∈Mt e|Dt
i ∩Xt *= ∅}.

The proof of convergence to a constrained Walrasian
equilibrium is not trivial. We have the aid of three aux-
iliary lemmas (in which D = (Di)i∈N denotes a de-
mand situation) to get the proof. These three lemmas
are closely connected. The proof of Lemma 4 is based
on Lemmas 2 and 3, and the proof of Theorem 2 is
based on these three lemmas.

Lemma 2 states that, each nonempty subset of a
minimal over-demanded set of items is not under-demanded.

Lemma 2 Let X ′ be a minimal over-demanded set of
items. Then for each ∅ ⊂ X ′′ ⊆ X ′, |{i ∈ N |Di ∩X ′′ *=
∅ and Di ⊆ X ′}| > |X ′′|.

The proof of Lemma 2 is not very hard, and comes from
using the reduction to absurdity.

Proof Suppose there exists ∅ ⊂ X ′′ ⊆ X ′ such that

|{i ∈ N |Di ∩X ′′ *= ∅ and Di ⊆ X ′}| ≤ |X ′′| (1)

Because X ′ is an over-demanded set of items, we have
|{i ∈ N |Di ⊆ X ′}| > |X ′|. So |{i ∈ N |Di ⊆ X ′\X ′′}|+
|{i ∈ N |Di∩X ′′ *= ∅ and Di ⊆ X ′}| > |X ′′|+ |X ′\X ′′|.
According to equation (1), we have |{i ∈ N |Di ⊆ X ′ \
X ′′}| > |X ′ \X ′′|. So X ′ \X ′′ is an over-demanded set
of items, contradicting the fact that X ′ is a minimal
over-demanded set of items. Consequently, for each ∅ ⊂
X ′′ ⊆ X ′, |{i ∈ N |Di ∩X ′′ *= ∅ and Di ⊆ X ′}| > |X ′′|.

Lemma 3 states that, the cardinality of a maximum
matching is not less than the cardinality of a set of real
items if each subset of the set is not under-demanded.

Lemma 3 Let X ′ ⊆ X \ {o} and |{i ∈ N |Di ∩ X ′′ *=
∅}| ≥ |X ′′| for each X ′′ ⊆ X ′. If M is a maximum
matching of BG((Di \ {o})i∈N ), then |M | ≥ |X ′|.

The proof of Lemma 3 is similar to that of Theorem
1.

Proof Let N ′ = {i ∈ N |Di ∩ X ′ *= ∅} and M ′ =
MMatching((Di∩X ′)i∈N ′). According to the correct-
ness of the MMatching algorithm, M ′ is a maximum
matching of the NX graph of (Di ∩X ′)i∈N ′ . It is easy
to find that |M | ≥ |M ′| and |M ′| ≤ |X ′|.

Suppose |M ′| < |X ′|. Then there exists an item a ∈
X ′\

⋃
e∈M ′ e. We construct a sequence 〈X0, N0〉, 〈X1, N1〉,

. . . as follow:

– X0 = {a}, N0 = {i ∈ N ′|a ∈ Di};
– Xk+1 = {b ∈ X ′|(∃j ∈ Nk){j, b} ∈ M ′}; and
– Nk+1 = {i ∈ N |Di ∩Xk+1 *= ∅}.

Because |{i ∈ N |Di ∩X ′′ *= ∅}| ≥ |X ′′| for each X ′′ ⊆
X ′, we have |Nk| ≥ |Xk| for each k ≥ 0. Pick any k ≥ 0
and i ∈ Nk (if Nk *= ∅). Suppose there does not exist
b ∈ X ′ such that {i, b} ∈ M ′. Then there is an M -
augmenting path from a to i. According to Theorem
1, M ′ is not maximum, contradicting the fact that M ′

is maximum. So for all k ≥ 0 and i ∈ Nk, there exists
b ∈ X ′ such that {i, b} ∈ M ′. Consequently, we can find
that:

1. Xk ⊆ Xk+1 ⊆ X ′, N0 ⊆ Nk ⊆ Nk+1 ⊆ N ′ for all
k > 0;
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2. if Nk+1 = Nk then Nk+l = Nk and Xk+1+l = Xk+1

for all k, l ≥ 0.

So there must exist K ≥ 0 such that N0 ⊂ · · · ⊂
NK−1 ⊂ NK = NK+1 = · · · . For each i ∈ NK , i is
assigned with a distinct item in XK+1 at πM ′

. And ac-
cording toXK+1’s definition, we have |NK | = |XK+1| =
|NK+1|. Consequently, |X0 ∪ XK+1| = 1 + |XK+1| >
|NK | = |{i ∈ N |Di ∩ (X0 ∪XK+1) *= ∅}|. This contra-
dicts the fact that |{i ∈ N |Di ∩ X ′′ *= ∅}| ≥ |X ′′| for
each X ′′ ⊆ X ′. So |M | ≥ |M ′| = |X ′|.

Lemma 4 states that, all the items in Xt can be
sold.

Lemma 4 Let Dt = (Dt
i∩Xt)i∈Nt . Then |M̂Dt | = |Xt|

for each 0 ≤ t ≤ T .

The proof of Lemma 4 is based on Lemmas 2 and 3.

Proof We first prove that |{i ∈ N t|Dt
i∩X ′ *= ∅}| ≥ |X ′|

for each ∅ ⊂ X ′ ⊆ Xt and 0 ≤ t ≤ T :

1. It holds at t = 0 because X0 = ∅.
2. Suppose MAPR does not stop at t̂ ≥ 0 and |{i ∈

N t|Dt
i ∩X ′ *= ∅}| ≥ |X ′| for each ∅ ⊂ X ′ ⊆ Xt and

0 ≤ t ≤ t̂.
3. Then Xmin *= ∅ and X are computed at time t̂ and

Steps 6–7 in Algorithm 2. Pick any ∅ ⊂ X ′ ⊆ X t̂+1.
Let N1 = {i ∈ N t̂|Dt̂

i ⊆ Xmin and Dt̂
i ∩ X ′ *= ∅}

and N2 = {i ∈ N t̂|Dt̂
i ∩ (X ′ \Xmin) *= ∅}. There are

two possibilities:
Case I : X = ∅. So X t̂+1 = X t̂ ∪ Xmin. According to

Lemma 2 and Item 2, we have |N1| > |X ′∩Xmin|
and |N2| ≥ |X ′ \ Xmin|. It is easy to find that

Dt̂+1
i ∩X ′ *= ∅ for each i ∈ N1 ∪N2 ⊆ N t̂+1 and

N1 ∩N2 = ∅. So |{i ∈ N t̂+1|Dt̂+1
i ∩X ′ *= ∅}| ≥

|N1 ∪ N2| = |N1| + |N2| > |X ′ ∩ Xmin| + |X ′ \
Xmin| = |X ′|.

Case II : X *= ∅ and some a ∈ X is assigned to some
buyer j such that a ∈ Dt̂

j ⊆ Xmin. So X t̂+1 =

X t̂ \ {a}. According to Lemma 2 and Item 2, we
have |N1| > |X ′∩Xmin| and |N2| ≥ |X ′ \Xmin|.
It is easy to find that Dt̂+1

i ∩ X ′ *= ∅ for each

i ∈ (N1 \ {j}) ∪ N2 ⊆ N t̂+1 and N1 ∩ N2 = ∅.
Consequently, |{i ∈ N t̂+1|Dt̂+1

i ∩ X ′ *= ∅}| ≥
|(N1 \ {j}) ∪ N2| ≥ |N1| − 1 + |N2| ≥ |X ′ ∩
Xmin|+ |X ′ \Xmin| = |X ′|.

Consequently, |{i ∈ N t̂+1|Dt̂+1
i ∩X ′ *= ∅}| ≥ |X ′|.

According to items 1–3, |{i ∈ N t|Dt
i ∩X ′ *= ∅}| ≥ |X ′|

for each X ′ ⊆ Xt and 0 ≤ t ≤ T . It is easy to find
that |M̂Dt | ≤ |Xt| for each 0 ≤ t ≤ T . According to
Lemma 3, we have |M̂Dt | ≥ |Xt| for each 0 ≤ t ≤ T . So
|M̂Dt | = |Xt| for each 0 ≤ t ≤ T .

Now we are ready to establish the following correct-
ness theorem for MAPR (and RM subroutine).

Theorem 2 If 〈pT , RT ,πMT 〉 is found by MAPR, then
it is a constrained Walrasian equilibrium.

Proof 〈pT , RT ,πMT 〉 is a constrained Walrasian equi-
librium if and only if it satisfies the five conditions
shown in Conditions 1–5.

1. Obviously, pT is an admissible price vector and RT

is a rationing system.
2. For each buyer i and the item assigned to her a =

πMT

(i), there are two possibilities: Case I (Step 8
in Algorithm 2), i is the winner of a lottery on item
a at some time T ′ ≤ T , and Case II (Step 6 and 9
in Algorithm 2), a is assigned to i at time T .
(a) In case I, a ∈ Di(pT ′

, RT ′
). So ui(a) − pT ′

a ≥
ui(b) − pT ′

b for all b ∈ {b ∈ X|RT ′
(i, b) = 1}.

Because RT ′
(i, a) = RT (i, a) = 1, pT ′

a = pT
a ,

RT ′
(i, b) ≥ RT (i, b) and pT ′

b ≤ pT
b for all b ∈

X, ui(a) − pT
a ≥ ui(b) − pT

b for all b ∈ {b ∈
X|RT (i, b) = 1}. So a ∈ Di(pT , RT ).

(b) In case II, according to the definition of πMT

(see RM subroutine and Steps 6–9), we have a ∈
Di(pT , RT ).

Consequently, πMT

is an equilibrium allocation.
3. According to Lemma 4, all the items in XT are sold.

Consequently, pT
a = p

a
for each a ∈ {b ∈ X|(∀i ∈

N)πMT

(i) *= b}. The correctness of RM subroutine
can derive from Items 2 and 3 directly.

4. Obviously (see Steps 2–5 and 8 of MAPR mecha-

nism in Algorithm 2), pT
a = pa and πMT

(i) = a for
some i ∈ N if RT (j, a) = 0 for some j ∈ N .

5. If RT (i, a) = 0 then i is a loser of a lottery on item a
at some time T ′ ≤ T . So ui(a)−pT ′

a ≥ ui(b)−pT ′

b for
all b ∈ {b ∈ X|RT ′

(i, b) = 1}. Because pT ′

a = pT
a ,

RT ′
(i, b) ≥ RT (i, b) and pT ′

b ≤ pT
b for all b ∈ X,

ui(a)−pT
a ≥ ui(b)−pT

b for all b ∈ {b ∈ X|RT (i, b) =
1}. So a ∈ Di(pT , R′) where R′(j, b) = RT (j, b) for
all 〈j, b〉 ∈ N ×X except R′(i, a) = 1.

So 〈pT , RT ,πMT 〉 is a constrained Walrasian equilibri-
um.

Example 4 See Example 1. Apply MAPR to 〈E,p,p〉.
The demands, price vectors, rationing system and oth-
er relevant data generated by MAPR are illustrated in
Table 3, where Ui, Di, X ′, N ′, and Xmin denote {a ∈
X|Rt(i, a) = 0}, Di(pt, Rt), X∩

⋃
e∈Mt e, N∩

⋃
e∈Mt e,

and the value of Xmin computed by the seller at Step
6 and time t. Figure 4 illustrates the execution of steps
1–7 of MAPR algorithm. Figure 5 illustrates the execu-
tion of RM algorithm (see step 8 of MAPR algorithm).
In Figure 4 and Figure 5, (Di)i∈N is represented as a
bipartite, items in Xmin and buyers in {i ∈ N |Di ⊆
Xmin} are highlighted with gray circles, and the bold
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lines denote M , i.e., the partial matching that have been
settled.

At t = 3, the price of c has reached its upper bound
4. The seller assigns randomly c to buyer 2 or buy-
er 3. So there are two different possible histories of
resource allocation from t = 3. Along the history of
t = 4.1; 5.1; 6.1, MAPR finds 〈p6.1, R6.1,πM6.1〉, where
πM6.1

(1) = o, πM6.1

(2) = c, πM6.1

(3) = b, πM6.1

(4) =
a, and πM6.1

(5) = d. Along the history of t = 4.2; 5.2; 6.2,
MAPR finds 〈p6.2, R6.2,πM6.2〉, where πM6.2

(1) = o,
πM6.2

(2) = b, πM6.2

(3) = c, πM6.2

(4) = a, and πM6.2

(5) =
d. It can be found that in both cases, MAPR discovers
a constrained Walrasian equilibrium.

Now we compare with two other allocation mech-
anisms that provide insight into the MAPR’s balance
between economy efficiency and social equality.

The English Auction (EA) mechanism allocates each
item a to the agent i who prefers it most breaking ties
at random (i.e., ui(a) = max{uj(a)|j ∈ N}), and sets
pa the price of a as:

pa =

{
u+ 1 if u *= ui(a)
ui(a) otherwise

where u = max{uj(a)|j ∈ N \ {i}}. Apply EA to the e-
conomy given in Example 1. Then the allocation and the
price vector determined by EA could be πEA and pEA

such that πEA(1) = {o}, πEA(2) = {b, c}, πEA(3) =
{o}, πEA(4) = {a}, πEA(5) = {d}, pEA = (0, 8, 6, 8, 8).
Obviously, πEA is more efficient than πM6.1

(and πM6.2

)
because

∑
i∈N

∑
a∈πEA(i) ui(a) =

∑
i∈N

∑
a∈πM6.2 (i) ui(a)

= 33 > 32 =
∑

i∈N

∑
a∈πM6.1 (i) ui(a). However, it

seems to be not fair that πEA assigns two real items
to agent 2 and does not assign any real item to agent 1
and agent 3.

In the Sequentially Picking (SP) mechanism , a-
gents take turns to pick items according to the sequence
1, 2, 3, . . . , n (every time an agent is designated, she
picks one real item out of those that remain), and pa

the price of a is fixed to be p
a
for each a ∈ X. Apply SP

to the economy given in Example 1. Then the allocation
and the price vector determined by SP are πSP and pSP

such that πSP (1) = {d}, πSP (2) = {c}, πSP (3) = {a},
πSP (4) = {b}, πSP (5) = {o}, pSP = p. SP guarantees
that there are min(|N |, |X| − 1) agents assigned with
real items and each agent is assigned with at most one
real item. However, the efficiency of SP can be very
poor. For example,

∑
i∈N

∑
a∈πSP (i) ui(a) = 24 < 32 =∑

i∈N

∑
a∈πM6.1 (i) ui(a) < 33 =

∑
i∈N

∑
a∈πM6.2 (i) ui(a).

Table 3 Results generated by MAPR

t pt
o pt

a pt
b pt

c pt
d Xmin

0 0 5 4 1 5 {c}
1 0 5 4 2 5 {c}
2 0 5 4 3 5 {c}
3 0 5 4 4 5 {c}
4.1 0 5 4 4 5 {d}
5.1 0 5 4 4 6 {d}
6.1 0 5 4 4 7 ∅
4.2 0 5 4 4 5 {d}
5.2 0 5 4 4 6 {d}
6.2 0 5 4 4 7 ∅
t U1 U2 U3 U4 U5 N ′

0 ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ ∅ ∅ ∅ ∅
2 ∅ ∅ ∅ ∅ ∅ ∅
3 ∅ ∅ ∅ ∅ ∅ ∅
4.1 ∅ ∅ {c} ∅ ∅ {2}
5.1 {c} ∅ {c} ∅ ∅ {2}
6.1 {c} ∅ {c} ∅ ∅ {2}
4.2 ∅ {c} ∅ ∅ ∅ {3}
5.2 {c} {c} ∅ ∅ ∅ {3}
6.2 {c} {c} ∅ ∅ ∅ {3}
t D1 D2 D3 D4 D5 X′

0 {c} {c} {c} {a} {d} ∅
1 {c} {c} {c} {a} {d} ∅
2 {c, d} {c} {c} {a} {d} ∅
3 {d} {c} {c} {a} {d} ∅
4.1 {d} {d} {a} {d} {c}
5.1 {d} {b, d} {a} {d} {c}
6.1 {o, d} {b} {a} {d} {c}
4.2 {d} {a, b} {a} {d} {c}
5.2 {d} {a, b} {a} {d} {c}
6.2 {o, d} {a, b} {a} {d} {c}

5 Expected profits, Prices, and Strategical
Issues

Since the history of MAPR is nondeterministic, we need
to introduce concepts of buyers’ expected profits and
items’ expected prices. Let Rt

∗ be a rationing system s.t.
Rt

∗(i, a) = 1 if {i, a} ∈ M t or a *∈
⋃

e∈Mt e, and 0 other-
wise. Because we can induce M t from Rt

∗. So M t can be
written as MRt

∗ . We say 〈pt, Rt
∗〉 is an allocation situa-

tion. Assume that the computation of MODS algorith-
m and the selection of items in Step 8 in Algorithm 2
are deterministic, all the lots happening in MAPR are
fair2. Then i’s expected profit and a’s expected price
on 〈p, R〉 (i.e., u∗

i (p, R) and p∗
a(p, R)) are:

u∗
i (p, R) =






Vi(p, R) ifXmin = ∅
u∗
i (p

′, R) ifX = ∅∑
i′∈N′ u

∗
i (p,Ri′ )

|N ′| otherwise

2 Suppose there are k buyers drawing lots for the right to buy
item a. Then the lot is fair if each one of these buyers has 1/k
chance of winning the lot.
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4 51 2 3

a b d

0 5 4 1 5p0

t = 0

co

c’s price increases 1

4 51 2 3

a b d

0 5 4 2 5p1

t = 1

co

c’s price increases 1

1 4 52 3

a b d

0 5 4 3 5p2

t = 2

co

c’s price increases 1

1 4 52 3

a b d

0 5 4 4 5p3

t = 3

co

c’s price reaches its upper bound. 2 and 3 draw lot to get c

2 wins

2 41 3 5

a b c

0 5 4 4 5p4.1

t = 4.1

do

3 wins

2 3 41 5

a b c

0 5 4 4 5p4.2

t = 4.2

do

d’s price increases 1

2 3 41 5

a b c

0 5 4 4 6p5.2

t = 5.2

do

d’s price increases 1

1 2 3 4 5

a b c d

0 5 4 4 7p6.2

t = 6.2

o

d’s price increases 1

2 3 41 5

a b c

0 5 4 4 6p5.1

t = 5.1

do

d’s price increases 1

1 2 3 4 5

a b c d

0 5 4 4 7p6.1

t = 6.1

o

Fig. 4 Illustration of MAPR(step 1–7)’s execution

p∗
a(p, R) =






pa ifXmin = ∅
p∗
a(p

′, R) ifX = ∅∑
i′∈N′ p

∗
a(p,Ri′ )

|N ′| otherwise

where (let D = (Di(p, R))i∈N ):

– Xmin = ∅ if |M̂D| = |{i ∈ N |o *∈ Di(p, R)}|, and
MODS(D, M̂D) otherwise; X = {a ∈ Xmin|pa =
pa};

– p′
a = pa, ∀a *∈ Xmin and p′

a = pa + 1, ∀a ∈ Xmin;
– b ∈ X is the item selected by the seller in Step 8 in

Algorithm 2;
– N ′ = {i ∈ N |b ∈ Di(p, R) ⊆ Xmin};
– ∀〈i, a〉 ∈ N×X:Ri′(i, a) = R(i, a) if a *= b;Ri′(i, b) =

0 if i *= i′; and Ri′(i′, b) = 1.

In case that 2 wins the lot

1 2 3 4 5

a b c d

0 5 4 4 7p

o

1 2 3 4 5

a b dco

d’s price is greater than its lower
bound. So d must be sold (see
condition 3 of constrained
Walrasian equilibria). It’s found
that d can be assigned to agent 1.
Agents in {3,4,5} must be satisfied
because they only demand real items
(see condition 2 of constrained
Walrasian equilibria).

1 2 3 4 5

a b dco

1 2 3 4 5

a b dco

1 2 3 4 5

a b dco

1 2 3 4 5

a b dco

Finally, d is sold and agents
in {3,4,5} are satisfied.

In case that 3 wins the lot

1 2 3 4 5

a b c d

0 5 4 4 7p

o

1 32 4 5

a b dco

d’s price is greater than its
lower bound. So d must be sold.
It’s found that d can be assigned
to agent 1. Agents in {2,4,5}
must be satisfied because they
only demand real items.

1 32 4 5

a b dco

1 32 4 5

a b dco

1 32 4 5

a b dco

1 32 4 5

a b dco

Finally, d is sold and agents
in {2,4,5} are satisfied.

The input to RM Algorithm
(the lower bound price vector
is (0,5,4,1,5))

M ′

V

E

(see lines 1-7 of Algorithm 3)

M ′′

The goal of M ′′ is to satify
agents who must be satisfied.
M ′′ is augmenting step by step.
(see lines 8-10 of Algorithm 3)

result

(see lines 11-12 of Algorithm 3)

Fig. 5 Illustration of RM’s execution

In fact, u∗
i (p, R) and p∗

a(p, R) can be computed by
developing a search tree: each node is an allocation situ-
ation, and is expanded (if Xmin *= ∅) into (i) one single
branch if X = ∅, and (ii) |N ′| branches otherwise. See
Tables 2 and 3. We can find that u∗

1(p
0, R0

∗) = 0.5 ∗
u∗
1(p

6.1, R6.1
∗ ) + 0.5 ∗ u∗

1(p
6.2, R6.2

∗ ) = 0, u∗
3(p

0, R0
∗) =

0.5∗u∗
3(p

6.1, R6.1
∗ )+0.5∗u∗

3(p
6.2, R6.2

∗ ) = 2.5, p∗
a(p

0, R0
∗) =

0.5 ∗ p∗
a(p

6.1, R6.1
∗ ) + 0.5 ∗ p∗

a(p
6.2, R6.2

∗ ) = 5.

As most collective decision mechanisms, MAPR is
generally not strategyproof (in the sense of expected
profit). For instance, see Example 4. If buyer 1 report-
s her demands sincerely, then her expected profit is 0.
However, if 1 knows other buyers’ valuations and re-
ports strategically, then she reports {c} from t = 0
to t = 3 (i.e., as if her valuation to item c is not less
than 7), then reports sincerely, then her expected profit
changes to 1/3, which makes her better off.



11

Now we are interested in two questions: (1) is MAPR
strategyproof for some restricted domains? (2) when it
is not, how hard is it for an buyer who knows the val-
uations of the others to compute an optimal strategy?

First we define reporting strategies and manipula-
tion problems formally. Without loss of generality, let
1 be the manipulator. Note that not every sequence of
1’s demands is reasonable. For instance, see Example
4 and Table 3. The seller can detect 1’s manipulation
if 1 reports {c}, {c}, {c, d}, and {c} at t = 0, 1, 2,
and 3, respectively, because there is no value function
u s.t. u(c) − p2

c = u(c) − 3 = u(d) − 5 = u(d) − p2
d =

u(d)− p3
d < u(c)− p3

c = u(c)− 4. A strategy for buyer
1 is a value function u : X → Z+ with u(o) = 0. So 1
can safely manipulate the process of MAPR when she
reports her demands according to u completely (as if
u is her true value function). A manipulation problem
M (for buyer 1) is a 5-tuple 〈N,X, {ui}i∈N ,p,p〉 where
〈N,X, {ui}i∈N 〉 is an economy, p and p are the lower
and upper bound price vectors on X, respectively. A
strategy for M is optimal if 1 can not strictly increase
her expected profit by reporting her demands according
to any other strategy.

Now, back to Question (1): we show that the answer
is positive when there are two buyers.

Theorem 3 Let N = {1, 2} and M = 〈N,X, {ui}i∈N ,p,
p〉 be a manipulation problem. Then u1 is optimal for
M .

Proof. Suppose that if 1 reports sincerely, then her
expected profit is ∆. Let D1 and D2 be 1 and 2’s true
demands at p and R respectively, where R(i, a) = 1 for
each i ∈ N and a ∈ X.

Obviously, if D1 ∪D2 = {o} or |D1 ∪D2| ≥ 2 (i.e.,
Xmin = ∅ at t = 0) then ∆ = maxa∈X(u1(a) − p

a
),

which is the best possible outcome for 1. So u1 is opti-
mal in these cases.

Now, suppose D1 = D2 = {a} s.t. a *= o. Pick
any strategy u′. Let k = pa − p

a
, ki = ui(a) − p

a
−

maxb∈X\{a}(ui(b)−p
b
), bi ∈ X \ {a} s.t. ui(bi)−p

bi
=

ui(a)−p
a
−ki, and k̂ = min(k, k1−1, k2−1). Then if 1

applies strategy u1, then she will report D1 from t = 0
to t = k̂ and:

1. if k̂ = k, then ∆ = 0.5 ∗ (u1(a) − p
a
− k) + 0.5 ∗

(u1(b1)−p
b1
)=u1(b1)−p

b1
+0.5∗(k1−k) > u1(b1)−

p
b1
. If 1 applies u′ instead, then her expected profit

will not be better than u1(b1)− p
b1

< ∆ if u′(a)−
p
a
− maxb∈X\{a}(u

′(b) − p
b
) ≤ k, and will not be

better than ∆ otherwise.
2. if k > k̂ = k1 − 1, then ∆ = u1(b1)−p

b1
. Because 2

can insist on {a} to t = min(k, k2 − 1) ≥ k1 − 1, 1’s
expected profit can not be better than ∆.

3. if k > k̂ = k2 − 1, then ∆ = u1(a) − p
a
− k2 ≥

u1(a)−p
a
− k1 = u1(b1)−p

b1
. Because 2 can insist

on {a} to t = k2 − 1, 1’s expected profit can not be
better than ∆.

So in all cases, 1 can not strictly increase her expected
profit by applying strategy u′. Then u1 is optimal for
M . !

6 Conclusions and Future Works

We have presented a decentralized protocol (dynamic
mechanism) for allocating indivisible resources under
price rigidities, and proved formally that it can discov-
er constrained Walrasian equilibria in polynomial time.
We also have investigated the protocol from the points
of computation of buyers’ expected profits and item-
s’ expected prices, and discussed the manipulation (by
one buyer) problem in the sense of buyer’s expected
profit.

Future work includes proving the conjecture about
the complexity of manipulation (in the sense of expect-
ed profits) by one buyer, studying manipulation (in the
sense of expected prices) by one or more buyers (whose
manipulation motivation is not to buy some resources
but to put up the prices of some resources), studying the
problems of allocating divisible resources under prices
rigidities. The last and most important future work is
to apply our methodology to allocate some public re-
sources (e.g., public housing, residential parking spaces,
etc.) in real life.
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