
E. Corchado et al. (Eds.): Innovations in Hybrid Intelligent Systems, ASC 44, pp. 215–222, 2007.
springerlink.com © Springer-Verlag Berlin Heidelberg 2007

A New PSO Algorithm with Crossover Operator for
Global Optimization Problems

Millie Pant1, Radha Thangaraj1, and Ajith Abraham2

1 Department of Paper Technology, IIT Roorkee, India
millifpt@iitr.ernet.in, t.radha@ieee.org

2 Center of Excellency for Quantifiable Quality of Service,
Norwegian University of Science and Technology, Norway
ajith.abraham@ieee.org

Abstract. This paper presents a new variant of Particle Swarm Optimization algorithm named
QPSO for solving global optimization problems. QPSO is an integrated algorithm making use
of a newly defined, multiparent, quadratic crossover operator in the Basic Particle Swarm
Optimization (BPSO) algorithm. The comparisons of numerical results show that QPSO
outperforms BPSO algorithm in all the twelve cases taken in this study.

Keywords: Particle Swarm Optimization, Crossover, Global Optimization, Quadratic
Interpolation.

1 Introduction

Evolutionary Algorithms (EA) and Particle Swarm Optimization (PSO) are perhaps
the two most common stochastic techniques for solving global optimization problems.
Both the techniques have proved their mettle in solving the complex optimization
problems (test as well as real life problems). Some of the similarities between the EA
and PSO as pointed out by Angeline [1] may be given as:

− Both are population based search techniques.
− Neither requires the auxiliary knowledge of the problem.
− In both the algorithms solutions belonging to the same population interact with

each other during the search process.
− The quality of the solutions are improved using techniques inspired from real

world phenomenon On one hand, EA are inspired from the metaphor of natural
biological evolution using the concepts of selection, mutation and reproduction on
the other hand PSO uses the complex social cooperative and competitive behavior
exhibited by different species like birds, bees humans etc.

Both the algorithms have their share of weaknesses and strengths and it is quite
natural to think that the fusion of the two will result in an algorithm which has
properties of both the algorithms. A number of techniques suggesting a combo of
these two methods are available in literature. Out of the EA operators’ viz. selection,
crossover and mutation, the one that has been used most frequently is the mutation

216 M. Pant, R. Thangaraj, and A. Abraham

operator. Some of the commonly used mutation operators used in PSO algorithms are
Gaussian, Cauchy, linear, nonlinear operators etc. For a detailed description, the
reader is suggested [2] - [7]. However, for selection and reproduction operator only a
few examples are available (see for instance Angeline [8], Clerc [9]). The objective of
this paper is to see the performance of a BPSO after including a crossover operator in
it. For this purpose we developed a new crossover operator called quadratic crossover
operator. It makes use of three swarm particles to produce a new particle that lies on
the point of minima of the quadratic curve (hence the name quadratic crossover)
passing through the three chosen particles.

The structure of the paper is as follows: in section 2, we have briefly explained the
Basic Particle Swarm Optimization, in section 3; we have defined the proposed QPSO
algorithm. Section 4 deals with experimental settings. Section 5 gives numerical
results and finally the paper concludes with section 6.

2 Basic Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a relatively newer addition to a class of
population based search technique for solving numerical optimization problems. The
particles or members of the swarm fly through a multidimensional search space
looking for a potential solution. Each particle adjusts its position in the search space
from time to time according to the flying experience of its own and of its neighbors
(or colleagues).

For a D-dimensional search space the position of the ith particle is represented as
Xi = (xi1, xi2, …, xiD). Each particle maintains a memory of its previous best position
Pbesti = (pi1, pi2… piD). The best one among all the particles in the population is
represented as Pgbest = (pg1, pg2… pgD). The velocity of each particle is represented as
Vi = (vi1, vi2, … viD). In each iteration, the P vector of the particle with best fitness in
the local neighborhood, designated g, and the P vector of the current particle are
combined to adjust the velocity along each dimension and a new position of the
particle is determined using that velocity. The two basic equations which govern the
working of PSO are that of velocity vector and position vector given by:

)()(2211 idgdidididid xprcxprcwvv −+−+= (1)

ididid vxx += (2)

The first part of equation (1) represents the inertia of the previous velocity, the
second part is the cognition part and it tells us about the personal thinking of the
particle, the third part represents the cooperation among particles and is therefore
named as the social component [10]. Acceleration constants c1, c2 [11] and inertia
weight w [12] are the predefined by the user and r1, r2 are the uniformly generated
random numbers in the range of [0, 1].

3 Proposed QPSO Algorithm

The proposed QPSO algorithm is a simple and modified integrated version of BPSO
and EA. The quadratic crossover operator suggested in this paper is a nonlinear multi

 A New PSO Algorithm with Crossover Operator 217

parent crossover operator which makes use of three particles (parents) of the swarm to
produce a particle (offspring) which lies at the point of minima of the quadratic curve
passing through the three selected particles. The new particle is accepted in the swarm
irrespective of the fact whether it better or worse than the worst particle present in the
swarm. In this way the search is not limited to the region around the current best
location but is in fact more diversified in nature.

The quadratic interpolation [13] uses a = Xmin, the particle having minimum
function value and two other randomly selected particles {b, c} from the swarm to

determine the coordinates of the new particle)~,.......,~,~(~ 21 ni xxxx = , where

)(*)()(*)()(*)(

)(*)()(*)()(*)(

2

1~
222222

cfbabfacafcb

cfbabfacafcb
x

iiiiii

iiiiii
i

−+−+−
−+−+−

= (3)

The nonlinear nature of the quadratic crossover operator used in this work helps in
finding a better solution in the search space. The computational steps of the proposed
QPSO are given in Fig. 1.

Fig. 1. Flow QPSO Algorithm

4 Experimental Settings

In order to make a fair comparison of BPSO and QIPSO, we fixed the same seed
for random number generation so that the initial swarm population is same for both
the algorithms. The number of particles in the swarm (swarm size) is taken as 30.
A linearly decreasing inertia weight is used which starts at 0.9 and ends at 0.4,
with the user defined parameters c1=2.0 and c2=2.0. We have also considered the
measurement of diversity, which is an important aspect for checking the efficiency
of the swarm. High diversity generally implies a better balance between
exploration and exploitation. The diversity measure [14] of the swarm is taken as:

∑ ∑ −=
= =

s xn

i

n

j
jij

s

txtx
n

tSDiversity
1 1

2))()((
1

))(((4)

where S is the swarm, ns = ⎜S ⎜is the swarm size, nx is the dimensionality of the

problem, xij is the j’th value of the i’th particle and)(tx j is the average of the j’th

dimension over all particles, i.e.

218 M. Pant, R. Thangaraj, and A. Abraham

s

sn

i
ij

j n

tx

tx
∑
== 1

)(

)(. (5)

For each algorithm, the maximum number of iterations allowed was set to 30,000
for 30 dimensions and 100,000 for 50 dimensions. For 30 dimensions, a total of 10
runs for each experimental setting were conducted and the average fitness of the best
solutions throughout the run was recorded. For 50 dimensions, only a single run was
performed and the best fitness value was recorded.

Table 1. Numerical benchmark problems

 Remark1: Functions sine and cosine take arguments in radians.

 A New PSO Algorithm with Crossover Operator 219

5 Experimental Results

In order to check the compatibility of the proposed QPSO algorithm we have
tested it on a suite of 12 standard bench mark problems, generally used for testing
the efficiency of global optimization algorithms, given in Table 1. The test bed
comprises a variety of problems ranging from a simple spherical function to highly
multimodal functions and also a noisy function (with changing optima). In Table 2,
we have shown the results of problems with dimension 30 and in Table 3, are
given the results of problems with increased dimension 50 in terms of best fitness

Table 2. Numerical results (dimension: 30)

Table 3. Numerical results (dimension: 50)

220 M. Pant, R. Thangaraj, and A. Abraham

value. In Table 4, we have shown the performance improvement of QPSO with
BPSO. Fig, 2 show the mean best fitness curves for selected benchmark problems.

From the numerical results presented in Tables 2, 3, 4 and 5, it is evident that
QPSO is a clear winner. It gave a better performance for all the problems with
dimension 30 except for f8. However it is quite interesting to note that QPSO gave a
much better performance for the same function (f8) when the dimension is increased
to 50. In terms of percentage of improvement (of average fitness function value), the

Table 4. Improvement (%) of QPSO in comparison with BPSO

 (a) f5 (b) f6

 (c) f9 (d) f10

Fig. 2. Convergence graph for selected benchmark problems

 A New PSO Algorithm with Crossover Operator 221

results favor QPSO particularly for higher dimension (50). One interesting and
noticeable fact about QPSO is that despite low diversity (although higher than BPSO
in most of the cases) it gave good results.

6 Conclusion

In this research article, we proposed a simple and modified version of an integrated
algorithm exploiting the features of PSO and EA. The novelty of the present work is
the use of a nonlinear quadratic crossover operator and the manner in which it is
applied. The new solution is accepted even if it is worse than the worst solution; this
prevents the search space from contracting and thereby maintains diversity. The
empirical results show that the proposed algorithm is quite competent for solving
problems of dimensions up to 50. In future we shall also incorporate the phenomenon
of mutation in the algorithm and will use it to solve the problems of higher
dimensions.

Acknowledgments. The authors would like to thank the unknown referees for their
comments, which helped in bringing the paper in more presentable format.

References

1. Angeline P. J.: Evolutionary Optimization versus Particle Swarm Optimization:
Philosophy and Performance Difference. The 7th Annual Conference on Evolutionary
Programming, San Diego, USA, (1998).

2. Hu, X., Eberhart, R. C., and Shi, Y.: Swarm Intelligence for Permutation Optimization: A
Case Study on n-Queens problem. In Proc. of IEEE Swarm Intelligence Symposium, pp.
243 – 246 (2003).

3. Miranda, V., and Fonseca, N.: EPSO – Best-of-two-worlds Meta-heuristic Applied to
Power System problems. In Proc. of the IEEE Congress on Evolutionary Computation,
Vol. 2, pp. 1080 – 1085 (2002).

4. Miranda, V., and Fonseca, N.: EPSO – Evolutionary Particle Swarm Optimization, a New
Algorithm with Applications in Power Systems. In Proc. of the Asia Pacific IEEE/PES
Transmission and Distribution Conference and Exhibition, Vol. 2, pp. 745 – 750 (2002).

5. Ting, T-O., Rao, M. V. C., Loo, C. K., and Ngu, S-S.: A New Class of Operators to
Accelerate Particle Swarm Optimization. In Proc. of the IEEE Congresson Evolutionary
Computation, Vol. 4, pp. 2406 – 2410 (2003).

6. Yao, X., and Liu, Y.: Fast Evolutionary Programming. In L. J. Fogel, P. J. Angeline, and
T. B. Back, editors, Proceedings of the Fifth Annual Conference on Evolutionary
Programming, MIT Press, pp. 451 – 460 (1996).

7. Yao, X., Liu, Y., and Lin, G.: Evolutionary Programming made Faster. IEEE Transactions
on Evolutionary Computation, Vol. 3(2), pp. 82 – 102 (1999).

8. Angeline, P. J.: Using Selection to Improve Particle Swarm Optimization. In Proc. of the
IEEE Congress on Evolutionary Computation, IEEE Press, pp. 84 – 89 (1998).

9. Clerc, M.: Think Locally, Act Locally: The Way of Life of Cheap-PSO, an Adaptive PSO.
Technical Report, http: // clerc.maurice.free.fr/pso/, (2001).

222 M. Pant, R. Thangaraj, and A. Abraham

10. Kennedy, J.: The Particle Swarm: Social Adaptation of Knowledge. IEEE International
Conference on Evolutionary Computation (Indianapolis, Indiana), IEEE Service Center,
Piscataway, NJ, pg.303-308 (1997).

11. Eberhart, R.C., and Shi, Y.: Particle Swarm Optimization: developments, Applications and
Resources. IEEE International Conference on Evolutionary Computation, pg. 81 -86
(2001).

12. Shi, Y. H., and Eberhart, R. C.: A Modified Particle Swarm Optimizer. IEEE International
Conference on Evolutionary Computation, Anchorage, Alaska, pg. 69 – 73 (1998).

13. Ali, M. M., and Torn, A.: Population Set Based Global Optimization Algorithms: Some
Modifications and Numerical Studies. www.ima.umn.edu/preprints/, (2003).

14. Engelbrecht, A. P.:Fundamentals of Computational Swarm Intelligence. John Wiley &
Sons Ltd., (2005).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

