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Abstract: Time modulated antenna arrays attracted the attention 
of researchers for the synthesis of low/ultra-low side lobes in 
recent past. In this article we propose an improved variant of a 
recently developed ecologically inspired metaheuristic, well-
known as Invasive Weed Optimization (IWO), to solve the real 
parameter optimization problem related to the design of time-
modulated linear antenna arrays with ultra low Side Lobe Level 
(SLL), Side Band Level (SBL) and Main Lobe Beam Width 
(BWFN). We improvise the classical IWO by introducing two 
parallel populations and a more explorative routine of changing 
the mutation step-size with iterations. Experimental results 
indicate that the proposed algorithm achieves better performance 
over the design problem as compared to the conventional Taylor 
Series based method and the only known metaheuristic approach 
based on the Differential Evolution (DE) algorithm. 
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I. INTRODUCTION 
 
Although first proposed long back in 1960’s time modulated 
antenna arrays have recently been revived by the researchers 
due to their efficiency in realizing ultra-low sidelobe levels in 
the far-field pattern [1 - 5]. This feature is mainly attributed to 
the fact that time modulated antenna arrays incorporate an 
additional degree of freedom in their design-the time. For an 8-
element slotted linear array the time modulation method and 
the realization of a nearly ultra-low SLL (~39.8dB) were first 
achieved by Kummer et al [2]. The general principles for 
analysis of time modulated antenna system were first put 
forward by Bickmore in [5]. Although antenna arrays of this 
kind have greater flexibility for design and offers significant 
reduction in the dynamic-range ratio of the excitation for ultra-
low SLLs as compared to that required in ordinary SLLs, the 
design of time modulated arrays is still complicated due to the 
presence of a multitude of sideband signals. Since these 
sideband signals are usually spaced at multiples of the 
modulation frequency, a significant portion of the radiated or 
received power is shifted to the sidebands. 
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Certain applications demand complete removal of sideband 
signals and hence they should be suppressed as far as possible 
to improve the efficiency of array design. In [5] Yang et al. 
proposed a Differential Evolution (DE) based approach for the 
design of time modulated linear arrays with effective 
suppression of sideband radiation patterns. Such designs offer 
severe challenges to the antenna researchers and as indicated 
by [6] metaheuristic algorithms can be the best ways to handle 
them. However, to the best of our knowledge, other than DE, 
no other population-based metaheuristic has been applied to 
this kind of problems till date. 

Classical derivative-based optimization techniques 
need a well defined starting point which should be significantly 
close to the final solution or they are very likely to get trapped 
in a local optimum. The computational drawbacks of existing 
numerical methods have forced the researchers all over the 
world to rely on metaheuristic algorithms founded on the basis 
of simulation of some natural phenomena. In recent past the 
computation cost having been reduced dramatically, 
researchers from diverse domains of science and engineering 
are drawn towards bio-mimicry and bio-inspiration, for solving 
computational problems and constructing intelligent systems 
like autonomous robots. Following the same trends, in 2006 
Mehrabian and Lucas proposed the Invasive Weed 
Optimization (IWO) [7], a derivative free metaheuristic 
algorithm mimicking the ecological behaviour of colonizing 
weeds. Since its advent IWO has found several successful 
engineering applications like tuning of Robot Controller [7] , 
Optimal Positioning of Piezoelectric actuators [8] , 
development of recommender system [9] , antenna 
configuration optimization [10], design of E-shaped MIMO 
antenna [11], design of compact U-array MIMO antenna [12] , 
DNA computing [13] , and so on.  

In this work we modify the classical IWO with a view 
to improving its final accuracy and convergence speed over 
multimodal fitness landscapes. We then apply the modified 
IWO variant to the design of linear time modulated arrays. Our 
algorithm attempts to minimize the SLLs at centre frequency 
and sideband levels simultaneously and it uses the static 
excitation amplitude distribution and the switch on time 
intervals as the parameters to optimize. Comparisons with the 
classical DE based approach [4], a state-of-the-art DE variant 
[14] and state-of-the-art version of another very popular swarm 
intelligence algorithm called Particle Swarm Optimization 
(PSO) [15] over three difficult instantiations of the design 
problem involving 16, 32, and 64 elements arrays reflect the 
superiority of the proposed approach in terms of final accuracy, 
computational time, and robustness. Rest of the paper is 
organized as follows: 
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Section 2 provides an outline of the classical IWO algorithm 
and also describes the proposed modifications of the algorithm. 
Section 3 provides the formulation of the design problem in 
context to time modulated antenna arrays. Section 4 presents 
and discusses the experimental results. Finally the paper in 
concluded in Section 5 along with a discussion on the future 
avenues of research. 
 
 

II. CLASSICAL IWO AND ITS MODIFICATIONS  
 
Invasive Weed Optimization (IWO) is a meta-heuristic 
algorithm that mimics the colonizing behavior of weeds. The 
algorithm for IWO may be summarized as follows: 
 

A. Initialization 
        A finite number of weeds are initialized at the same 
element position of the conventional array which has a uniform 
spacing of  

! 

" / 2  between neighbouring elements. 

B. Reproduction 
     Each member of the population is allowed to produce seeds 
depending on its own, as well as the colony’s lowest and 
highest fitness, such that, the number of seeds produced by a  
weed increases linearly from lowest possible seed for a weed 
with worst fitness to the maximum number of seeds for a plant 
with best fitness. 

C. Spatial distribution 
       The generated seeds are being randomly distributed over 
the d-dimensional search space by normally distributed random 
numbers with mean equal to zero; but varying variance. This 
step ensures that the produced seeds will be generated around 
the parent weed, leading to a local search around each plant. 
However, the standard deviation (SD) of the random function 
is made to decrease over the iterations. 

        If 
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sd _ max and 

! 

sd _ min  be the maximum and minimum 
standard deviation and if  

! 

pow  be a real no. , then the standard 
deviation for a particular iteration may be given as in equation 
(1): 

                                                                                                                                

                                                                                                (1) 

This step ensures that the probability of dropping a seed in a 
distant area decreases nonlinearly with iterations, which results 
in grouping fitter plants and elimination of inappropriate 
plants. Therefore, this is a selection mechanism of IWO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 

Figure 1: Flow Chart for modified IWO algorithm 
 
D. Competitive Exclusion:     
      If a plant leaves no offspring then it would go extinct, 
otherwise they would take over the world. Thus, there is a need 
of some kind of competition between plants for limiting 
maximum number of plants in a colony. Initially, the plants in 
a colony will reproduce fast and all the produced plants will be 
included in the colony, until the number of plants in the colony 
reaches a maximum value

! 

popmax . However, it is expected that 
by this time the fitter plants have reproduced more than 
undesirable plants. From then on, only the fittest plants, among 
the existing ones and the reproduced ones; are taken in the 
colony and the steps 1 to 4 are repeated until the maximum 
number of iterations has been reached, i.e. the colony size is 
fixed from thereon to

! 

popmax . This method is known as 
competitive exclusion and is also a selection procedure of 
IWO.  A flowchart of the whole optimization process is 
illustrated in Figure 1. 
Modifications:    We have modified (1) as: 
 
 
              (2) 
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The |cos(iter)| adds a variation in sd which helps in exploring 
the better solutions quickly and prevents the new solutions to 
be spread out of the search space when the sd is relatively 
large. Suppose we consider an optimization problem where a 
scalar function   
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f (! x )  needs to be minimized. In classical IWO, 
the seeds are generated from a plant with a certain standard 
deviation, which is decreased as number of iteration increases. 
Thus, the plants slowly undergo a behavioral transformation 
from an explorative nature to an exploitative one. In many 
engineering problems as this one, often the primary goal is not 
only to locate the global optima but to find the best possible 
result utilizing fewer resources. Keeping this in mind the 
routine of decreasing sd is modified, such that if the weeds are 
near a suspected optimal solution then it can exploit it quickly 
rather than wait for the standard deviation to decrease to a 
reasonable value, which might occur near the end of the run. In 
our proposed strategy the standard deviation actually varies 
within an envelope, so lesser values of sd are obtained much 
before the end of the run. This facilitates quicker detection of 
optimal solutions and better results as compared to classical 
IWO, as verified experimentally. Figure 2 illustrates the 
decrement of sd with iterations for classical IWO and the 
modified IWO 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 2: Comparison of the variations of standard deviation with 

iterations for the classical and modified IWO. 
!

III. FORMULATION OF DESIGN PROBLEM 
 
We consider a time modulated linear array of N isotropic 
elements which are equally spaced and each element is 
controlled by a high speed radio frequency (RF) switch and 
excited by complex amplitude. The array is used to transmit a 
rectangular pulse of width T, with a pulse repetition frequency 
prf = 1/Tp , and Tp is the pulse repetition period. Here the array 
factor is given by  
 
                                                                                           (3) 

 
where f0 and ! are the centre operating frequency and the wave 
number in free space, respectively; " is the angle measured 
from the broadside direction; and d is the element spacing. Ak 
and #k are the static excitation amplitude and phase of the kth 
element, respectively and Uk are the periodic “switch-on” time 

sequence functions in which each element is switched on for $k 
(0 ! $k % T) in each period Tp.  
  
By decomposing (3) into a Fourier series, the radiation patterns 
at each harmonic frequency m. prf (m = 0, ±1, ±…... ±") are 
readily obtained and are given by 

                                                                           
       (4)

 

       
where ank is the complex amplitude and is given by  
 

                                                                                                (5)
 

 
At the center frequency (n = 0), (3) becomes  
                                                                                            

                           
 

                           (6) 
Thus we can use (5) and (6) to synthesize specific radiation 
patterns at f0 and f0 + prf , including ultra-low side lobe 
levels.To minimize the sideband levels we have used a 
modified version of the Invasive Weed Optimization (IWO) as 
the global optimization method. The static excitation 
amplitudes and the “switch-on” time intervals are the 
optimization parameter. The cost function is chosen as 
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           IV. EXPERIMENTAL RESULTS 

  
We have considered three different antenna array designs as 
three problem instantiations. These are 16 element time 
modulated antenna array, 32 element time modulated antenna 
array and 64 element time modulated antenna array; among 
which 32 elements is the most popular case. We have also 
solved these three problems with three other evolutionary 
algorithms as DE, DEGL [14] and CLPSO [15]. DEGL is a 
modified version of the differential evolution algorithm that 
uses topological neighbourhood (ring-shaped) of the parameter 
vectors for creating the difference vectors.  CLPSO uses a 
novel learning strategy whereby all other particles’ historical 
best information is used to update a particle’s velocity. This 
strategy enables the diversity of the swarm to be preserved to 
discourage premature convergence. The parameters for CLPSO 
and DEGL were chosen as mentioned in [14] and [15] 
respectively. The detailed parametric setup for all the 
algorithms is shown in Table 1.  

A 16-element linear array of isotropic radiating 
elements, with &/2 spacing, is considered for the time 
modulated antenna array with the following parameters: T = 
1's,  prf = 1 MHz, f0 = 3.0GHz. Applying Taylor Distribution 
for determining the excitation amplitudes, the maximum 
sideband level is about -17dB.  
 



Then the DE algorithm is applied to suppress the sideband 
levels with the search ranges for the static excitation 
amplitudes and the “switch on” time intervals are chosen as 
[0.252,1.0] and [0.06#s, 1.0#s] respectively. The maximum 
side lobe levels found is about -33.4 dB, which is no doubt an 
improvement over the Taylor Distribution method. The 
modified IWO algorithm gives much better results as below: 

"bwfn =15.13  degrees ,   SLLmax =  -34.48  dB,  SBLmax 
= -49.67 dB. Moreover to compare the performance of our 
algorithm we have applied DEGL and CLPSO algorithms to 
these problems. The power plot for 16 element antenna array is 
shown in Figures 3, 4, and 5. 
 
 

TABLE 1 :   PARAMETRIC TABLE FOR DIFFERENT ALGORITHMS 

(rd is the difference between the maximum and minimum values of the 
d-th decision variable) 
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Figure 3: Normalized power patterns of the time modulated linear 
array with optimized static excitations and switch-on time intervals:   

f0 and f0 + prf  by DE algorithm for 16 element array. 
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Figure 4: Normalized power patterns of the time modulated linear 
array with optimized static excitations and switch-on time intervals:   
f0 and f0 + prf  by DEGL algorithm for 16 element array. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Normalized power patterns of the time modulated linear 

array with optimized static excitations and switch-on time intervals:   
f0 and f0 + prf  by CLPSO algorithm for 16 element array. 

 
 

 

 

 

 
      

 

 

 
 

Figure 6: Normalized power patterns of the time modulated linear 
array with optimized static excitations and switch-on time intervals:   
f0 and f0 + prf  by our modified IWO algorithm for 16 element array. 

 

Next the proposed algorithm is applied on a 32 element time 
modulated linear array with an equal spacing of  operated 
at 35 GHz. The modulation frequency is 1 MHz. In these cases 

Modified IWO DE CLPSO DEGL 
Param. Val. Param Val Param. Val. Param. Val. 

Maximum 
population 

size 
150 Pop_size 150 Swarm 

size 150 Pop_size 150 

Initial 
Population 

size 
50 

Crossover 
Probability  

CR 
0.9  1.494 

Crossove
r 

Probabili
ty  CR 

0.9 

Maximum 
number of 

seeds 
5 F 0.8  1.494 F 0.8 

Minimum 
number of 

seeds 
1   Inertial 

Weight w 

linearly 
decreased 
from 0.9 

to 0.2 

Neighbor
hood size 

15% of 
Pop_ 
size 

 10% of the search 
range  

 
0.9*rd 

weight 
factor 

fixed, 
0.5 

 0.004% of the 
search range      

pow! 3! ! ! ! ! ! !



also the modified IWO algorithm proves better than DE and 
other algorithms. 

 The best result found by the three other algorithms DE, 
CLPSO, DEGL is SLLmax = -34.59 dB, SBLmax=-41.83 dB .But 
we have found much lower SLLmax as -36.04 dB and SBLmax=-
48.32 dB.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Normalized power patterns of the time modulated linear 
array with optimized static excitations and switch-on time intervals:   
f0 and f0 + prf by DE algorithm for 32 element array 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
Figure 8: Normalized power patterns of the time modulated linear 
array with optimized static excitations and switch-on time intervals:   
f0 and f0 + prf by DEGL algorithm for 32 element array 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.ure 9: Normalized power patterns of the time modulated linear 
array with optimized static excitations and switch-on time intervals:   

f0 and f0 + prf by CLPSO algorithm for 32 element array. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Normalized power patterns of the time modulated linear 
array with optimized static excitations and switch-on time intervals:   
f0 and f0 + prf  by our modified IWO algorithm for 32 element array. 

  
We have also taken the 64 element time modulated antenna array 
under consideration and suppressed the side lobe levels using 
our evolutionary algorithm . In this case also the modified IWO 
algorithm has suppressed the SLLmax and "bwfn much 
compared to other algorithms at -35.69dB and 13.07 degree. 
Whereas these values are 33.31 dB and 14.42 degree as found 
by DEGL, best among the others. Comparison results are 
shown in the table. The power plot for 64 element antenna 
array is shown below: 

 

 

 

 

 

 

 

 
Figure 11: Normalized power patterns of the time modulated linear 
array with optimized static excitations and switch-on time intervals:   

f0 and f0 + prf by DE algorithm for 64 element array. 
 

A non-parametric statistical test called Wilcoxon’s rank sum 
test for independent samples [16, 17] is conducted at the 5% 
significance level in order to judge whether the results obtained 
with the best performing algorithm differ from the results of 
the other algorithms in a statistically significant way. P values 
obtained through the rank sum test between the best algorithm 
and each of the other algorithms over the three design instances 
are presented in Table 3. In this table, NA stands for Not 
Applicable and occurs for the best performing algorithm itself 
in each case. Also the entries corresponding to statistically 
insignificant results (P-values greater than 0.05) are marked in 
bold. If the P-values are less than 0.05 (5% significance level), 



it is a strong evidence against the null hypothesis, indicating 
that the better final cost function values achieved by the best 
algorithm in each case is statistically significant and has not 
occurred by chance. 
Table 2 reports the best values of SLLmax, SBLmax and "bwfn 
found after fifty independent runs over all the three cases for 
all algorithms compared. It is clear from the table that 
suppression of the side lobe levels, which was the main goal of 
our design, is maximum achieved by our modified IWO 
algorithm. From the results shown in Table 3 we see that the 
standard deviation of the cost function value of fifty runs is 
least in case of our M-IWO algorithm. This indicates the 
vigorous performance of our algorithm i.e. it produces almost 
similar results when it is repeatedly applied on the same 
problem 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Normalized power patterns of the time modulated linear 
array with optimized static excitations and switch-on time intervals:   

f0 and f0 + prf by DEGL algorithm for 64 element array. 
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Figure 13: Normalized power patterns of the time modulated linear 
array with optimized static excitations and switch-on time intervals:   

f0 and f0 + prf by CLPSO algorithm for 64 element array. 
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Figure 14: Normalized power patterns of the time modulated linear 
array with optimized static excitations and switch-on time intervals:   
f0 and f0 + prf  by our modified IWO algorithm for 64 element array. 

 
 

Now to have a comparative measure of the computational time 
taken by the algorithms we have shown the convergence plots 
of all the algorithms for the three problem instantiations. As 
different algorithms evaluate the function value different times 
in the iterations, variation of fitness value with iteration is not a 
measure of the computational time consumed by the algorithm. 
So we have shown the variation of best fitness value with 
number of function evaluations in Figures 15 (a, b and c). Here 
we observe in all the cases, the proposed algorithm has reached 
the minimum fitness value consuming the least number of FEs, 
which indicate the greatest convergence speed of the proposed 
algorithm as compared to the other ones over this design 
problem. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 

TABLE 2:   BEST RESULTS OBTAINED BY DIFFERENT ALGORITHMS FOR THREE PROBLEM INSTANCES. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 3:   P-VALUES OBTAINED WITH WILCOXON’S RANK SUM TEST COMPARING THE BEST-PERFORMING ALGORITHM WITH ALL OTHER 
CONTESTANTS ON THREE DESIGN INSTANCES. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
 

Problem 

 
 

Algorithm 
SLL_max 

 
SBL_max 

 

! 

"BWFN  

Weighted Sum = 
w1*SLL_max  + 
w2*SBL_max  + 

w3*$BWFN 
DE -33.4 -46.2 15.06 -64.54 

DEGL -31.78 -31.55 15.08 -48.25 
CLPSO -31.75 -32.40 15.08 -49.07 

16 element 
array 

M-IWO -34.48 -49.67 15.13 -69.02 
DE -30.03 -45.2 14.49 -60.74 

DEGL -33.94 -41.83 13.06 -62.70 
CLPSO -34.59 -35.93 14.44 -56.08 

32 element 
array 

M-IWO -36.04 -48.32 14.42 -69.94 
DE -28.10 -50.45 14.5 -64.05 

DEGL -32.83 -52.42 13.07 -72.18 
CLPSO -33.31 -53.14 14.42 -72.03 

64 element 
array 

M-IWO -35.69 -49.17 13.07 -71.79 

Number of 
Elements 

Algorithm P-Value  

Modified IWO/DE 5.4122e-010 
Modified IWO/DEGL 3.5654e-006 16 

Modified IWO/CLPSO 2.5473e-007 
Modified IWO/DE 5.4572e-012 

Modified IWO/DEGL 1.7612e-005 32 
Modified IWO/CLPSO 2.2917e-008 

Modified IWO/DE 3.2423e-004 
Modified IWO/DEGL 6.4821e-003 64 
Modified IWO/CLPSO 2.3946e-006 

Figure 15 a) 16 element antenna array.  
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Figure 15. Convergence characteristics of the algorithms!

V.CONCLUSIONS 

In this article, we have proposed an improved variant of a 
recently developed ecologically inspired algorithm called 
the Invasive Weed Optimization, for the synthesis of time-
modulated linear antenna arrays that provide an attractive 
means for synthesis of low/ultra-low sidelobes. The design 
problem has been recast as an optimization task, which 
amounts to minimizing the side lobe levels and side band 
levels of the antenna array. As evident from the simulation 
results , the proposed algorithm is statistically significantly 
better than DE/rand/1/bin, DEGL and CLPSO over the 
tested design instances. As the M-IWO algorithm has 
proved much better than the others in terms of both final 
accuracy and convergence we expect that it will be an 
attractive alternative tool for different type of antenna 
synthesis problems such as circular antenna design, 
monopulse antenna design, X-Band antenna design and so 
on.  
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