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Abstract Cloud resource scheduling requires mapping of cloud resources to cloud

workloads. Scheduling results can be optimized by considering Quality of Service

(QoS) parameters as inherent requirements of scheduling. In existing literature, only

a few resource scheduling algorithms have considered cost and execution time

constraints but efficient scheduling requires better optimization of QoS parameters.

The main aim of this research paper is to present an efficient strategy for execution

of workloads on cloud resources. A particle swarm optimization based resource

scheduling technique has been designed named as BULLET which is used to

execute workloads effectively on available resources. Performance of the proposed

technique has been evaluated in cloud environment. The experimental results show

that the proposed technique efficiently reduces execution cost, time and energy

consumption along with other QoS parameters.
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1 Introduction

Cloud computing enables resources (Infrastructure, Platform or Software) to be

offered as services. These resources are provided using a pay-as-you-use pricing

plan [1]. The services offered to the users consist of set of components, which

may be offered by different providers. To satisfy the request of customers, service

must be provided in accordance with the required level of Quality of Service

(QoS). QoS is the capability to guarantee a definite level of performance based on

the parameters described by consumer and Service Level Agreement (SLA) in an

authorized agreement that describes QoS [2]. One of the major challenges in the

current cloud solutions is to provide the required services according to the QoS

level expected by the user. Cloud service providers want to confirm that sufficient

amount of resources are provisioned to ensure that QoS requirements of cloud

service consumers such as deadline, execution time and budget restrictions are

met. However, executing too many workloads on a single resource will cause

workloads to interfere with each other and result in degraded and unpre-

dictable performance which, in turn, discourages the users [3]. The mapping of

workloads to appropriate resources for execution in cloud environment is a

complex task and it can be solved by using optimization algorithms. Through

these techniques, effective scheduling of resources can be done after resource

provisioning. Dispersion, heterogeneity and uncertainty of resources brings

challenges to resource allocation, which cannot be satisfied with traditional

resource allocation policies in Cloud [4]. Thus, there is a need to make cloud

services and cloud-oriented applications efficient by taking care of these properties

of the cloud environment. Resource scheduling aims to allocate appropriate

resources at the right time to the right workloads, so that applications can utilize

the resources effectively which leads to maximization of scaling advantages [5, 6].

The minimum amount of resources should be used for a workload execution to

maintain a desirable level of QoS, or minimize workload completion time of a

workload. To address this problem, efficient solution should be developed which

schedules the provisioned resources efficiently by considering energy consump-

tion, execution cost and execution time as important QoS parameters.

In our earlier work [7–9], we have identified various research issues related to

QoS and SLA for cloud resource scheduling and based on these challenges, we have

developed a QoS based resource provisioning technique (Q-aware) to map the

resources to the workloads based on user requirements. The main aim of Q-aware is

to analyze the workloads, categorize them on the basis of common patterns and then

provision the resources for execution of cloud workloads before actual resource

scheduling. For resource scheduling, resource scheduling framework (QRSF) has

been proposed, in which resources have been scheduled by using different resource
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scheduling policies (cost, time, cost-time and bargaining based). Earlier research

work [7, 8] have been implemented in simulated cloud environment and only focus

on two QoS parameters (execution cost and time).

The motivation of our research work emerges from the challenge of finding the

best resource workload pair according to customer requirements. In real life

situations, there are three main QoS constraints that need to be considered for

efficient utilization of resources: (1) minimizing the execution time and energy

consumption, (2) minimizing the execution cost and at the same time meeting the

cloud workload deadline and (3) increasing user satisfaction. In this research work,

we have extended our previous research work [7] by proposing particle swarm

optimization Based resource provisioning and schedULing technique in cLoud
EnvironmenT called BULLET which focuses on other QoS parameters (availability,

resource utilization, latency and reliability) also along with energy consumption,

execution cost and time and requires minimum user involvement during execution

of workload. The main objectives of proposed technique are: (1) identifying the

QoS requirements of a workload, (2) clustering of workloads is done through

workload patterns, (3) k-means-based clustering algorithm is used for re-clustering

of workloads after assigning weights to quality attributes of each workload and (4)

resources are provisioned for clustered workloads by the resource provisioner based

on their QoS requirements before actual resource scheduling. Further, proposed

technique is modeled and simulated a cloud environment using CloudSim to

validate and optimize QoS parameters.

Initially, resource provisioning takes slight more time to identify the best

resources based on QoS requirements of a particular workload, but later on it

improves overall efficiency of resource management. Thus, the queuing time and

over-utilization and under-utilization of resources can be avoided or be assuaged.

Further, proposed technique outperforms as it adjusts the resources at runtime

according to the QoS requirements of workload. The paper is structured as follows:

in Sect. 2, related work of resource scheduling along with paper contribution has

been presented. PSO based resource scheduling technique has been presented in

Sect. 3. Experimental setup and results has been presented in Sect. 4. In Sect. 5,

conclusions and the future scope have been presented.

2 Related Work

Scheduling of workloads in a cloud environment is challenging due to dynamic and

heterogeneous resources spread over geographical area. Most of the reported

research deals with workload management systems in a cloud computing

environment on the basis of resource requirements. Cloud computing offers

dynamic and flexible resource allocation for reliable and guaranteed services in pay

according to use fashion. Many cloud consumers can demand number of cloud

services concurrently [10, 11]. Subsequently, there is a need to provide all the

resources to requesting cloud consumer in a well-organized way to fulfill their

requirements.
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2.1 Cloud Resource Scheduling

Varalakshmi et al. [12] described an Optimal Workflow based Scheduling (OWS)

framework to discover a solution that tries to meet the user-desired QoS constraints

i.e. execution time. This research shows little improvement in resource utilization

and it does not consider cost as one of the QoS parameters. Xing et al. [13]

presented an ant colony optimization (ACO) based job scheduling framework,

which adapts to dynamic characteristics of Cloud computing and incorporates

particular benefits of ACO in NP-hard problems. This approach reduced only job

completion time based on pheromone. Topcuoglu et al. [14] presented the

Heterogeneous Earliest Time First (HEFT) framework to discover the average

execution time of each workload and also the average communication time among

the resources of two workloads. The workload with higher rank value is given

higher priority. In the resource selection stage workloads are scheduled in priorities

and each workload is allocated to the resource that complete the workload at the

earliest time. The framework has not been designed to reduce cost and time. El-

kenawy et al. [15] proposed a RASA based scheduling framework to select the jobs

based on execution time instead of overall completion time. This technique shows

achieving schedules with comparable lower execution time as compared to original

Max–Min and Resource Aware Scheduling Algorithm (RASA) by considering only

provider’s benefit. Lin et al. [16] suggested compromised cost time based resource

scheduling policy which considers cost-constrained workflows and taking execution

time and cost as QoS parameters. This approach meets user designed deadline and

achieve lower cost simultaneously but not considering heterogeneous workflow

instances. Verma and Kaushal [17] presented Deadline and Budget Distribution-

based Cost-Time Optimization (DBD-CTO) workflow scheduling framework that

minimizes execution cost while meeting deadline without considering energy

consumption and heterogeneous cloud workloads.

2.2 PSO Based Cloud Resource Scheduling

Pandey et al. [18] introduced a particle swarm optimization (PSO) based heuristic

framework (PSO-H) to schedule the applications to Cloud resources that proceeds

both computation and data transmission cost. It is used for workflow applications by

changing its computation and communication costs. The assessment results show

that PSO can reduce the cost and good sharing of workload onto resources. They did

not consider execution time of workloads. Somasundaram and Govindarajan [19]

presented PSO based resource scheduling mechanism (PSO-HPC) to reduce

makespan, price, job rejection ratio and maximize jobs meeting deadline for HPC

applications. MATLAB programming environment is used to simulate the HPC

applications and resources and verified this technique on Eucalyptus-based cloud

environments and results depicted that this technique is efficient in reducing job

rejection ratio and execution cost, and improves user’s satisfaction without focusing

energy consumption. Netjinda et al. [20] described PSO based scheduling technique

(PSO-SW) to achieve scientific workflow execution within the particular deadlines.

This approach is used to identify the configuration requirements with minimum cost
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to execute the particular workflow application and executed the applications with

minimum cost without degradation in performance but execution time is not

considered as a QoS parameter. Yassa et al. [21] described Dynamic Voltage and

Frequency Scaling (DVFS) and PSO based scheduling policy (PSO-DVFS) for

scientific workloads to reduce consumption of power in which different levels of

voltage supply workloads are used through sacrificing clock frequencies. This

multiple voltage involves a compromise between the quality of schedules and

energy but execution time and cost are not considered as a QoS parameter. Proposed

technique (BULLET) has been compared with existing resource scheduling

techniques as described in Table 1.

These research works have considered only one of the QoS parameters from

energy, cost and time but all the three parameters have not been considered

simultaneously in any of the existing work to the best of the knowledge of the

authors. Moreover, most of the existing work considers homogeneous cloud

workloads. PSO based resource scheduling technique considers the basic features of

cloud computing in order to execute the heterogeneous cloud workloads with

minimum execution cost, time and energy consumption along with other QoS

parameters.

2.3 Our Contributions

We present a PSO based resource scheduling technique for both homogenous

and heterogeneous cloud workloads. This is an extension of our previous work

Table 1 Comparison of proposed technique with existing resource scheduling techniques

Technique Provisioning

based

scheduling

Workload type Clustering of

workloads

QoS parameters

OWS [12] 3 Homogenous 3 Execution time

ACO [13] 3 Homogenous 3 Completion time

HEFT [14] 3 Homogenous 3 Communication time

RSA [15] 3 Homogenous and

heterogeneous

3 Execution time

CTC [16] 3 Homogenous 3 Communication cost

DBD-CTO [17] 3 Homogenous 3 Execution time

PSO-H [18] 3 Homogenous 3 Computation and

communication cost

PSO-HPC [19] 3 Homogenous and

heterogeneous

3 Execution cost

PSO-SW [20] 3 Homogenous 3 Execution time

PSO-DVFS [21] 3 Homogenous 3 Energy

BULLET

(Proposed)

H Homogenous and

heterogeneous

H Execution time, cost, energy,

availability, resource

utilization, latency and

reliability

J Netw Syst Manage (2018) 26:361–400 365

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



[7]. The proposed technique focuses on how to map the cloud workload in order

to improve execution cost, time and energy along with other QoS parameters

(availability, resource utilization, latency and reliability). The proposed technique

has been evaluated in simulated cloud environment using CloudSim. The

performance of proposed technique has also been tested on cloud testbed using

synthetic workloads for different QoS parameters. We have then compared the

experimental results of proposed technique with existing PSO based resource

scheduling techniques. The main contribution of this paper is: (1) scheduling

technique for effective management of resources is proposed, (2) performance of

proposed technique has been evaluated in cloud environment using CloudSim,

(3) optimized important QoS parameters such as execution cost, energy

consumption and execution time and (4) improved the customer satisfaction

and queuing time, over and under-utilization of resources can be avoided or be

assuaged.

3 BULLET: Proposed PSO Based Resource Scheduling Technique

In cloud computing, resource scheduling is the core of resource management

system. It essentially indicates mapping of cloud workloads to the appropriate

resources from the available resource pool. This process searches the best

resource and maps with cloud workload based on consumer requirements. Process

of resource scheduling comprises of four steps. In first step, workloads are

analyzed and clustered based on their requirements. Second step, identifies the

required set of resources from resource pool. Third step, maps the cloud

workloads with appropriate resources based on QoS requirements as specified by

user. In Final step, schedule the resources to execute workloads therefore further

guaranteeing near optimal satisfaction of QoS requirements. Need of optimized

resource scheduling in cloud is achieved using proposed technique. For example,

assume that a customer wants to purchase some items from grocery store,

then salesman would ask the requirements in terms of budget etc. and then

salesman will display the items accordingly. Based on the money they want to

spend and other requirements and constraints, select the particular item among

all the displayed items. Figure 1 shows the architecture of proposed

technique (BULLET).

3.1 Resource Provisioning

The resource provisioning technique comprises of following units:

1. Bulk of Workloads Bulk of Workloads (BoW) are coming for execution and are

processed and stored in workload queue.

2. Workload Resource Manager Workload Resource Manager (WRM) contains

the information about resources, QoS metrics and SLA to provision the
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resources for execution of workloads based on QoS requirements described by

cloud consumer.

3. SLA Measure WRM receipts the information from the suitable Service Level

Agreement (SLA). After studying and confirming the various QoS constraints

which the workload has required, WRM checking the availability of resources.

4. QoS Metric Data It contains the information regarding QoS metrics used to

calculate weight for clustering of workloads.

5. Workload Analyzer The aim of Workload Analyzer is to look at different

characteristics of a cloud workload to determine the feasibility of porting the

application in the cloud. The different cloud workloads have different set of

QoS requirements and characteristics. All the workloads are submitted to WRM

are analyzed based on their QoS requirements. For QoS, the required workload

patterns are identified for clustering of workloads then identifies the metrics

required to assign the weights based on level of measurement (Sect. 3.1.1)

described in QoS requirements specified in SLA. K-Means based clustering

algorithm is used for re-clustering the workloads for execution on different set

of resources.

6. Resource Information The resource details include the number of CPU using,

size of memory, cost of resources, type of resources and number of resources.

All the common resources are stored in resource pool.

Bulk of Workloads

Workload Resource Manager

Workload Analyzer

Resource Provisioner

QoS Metric 
Data

SLA 
Measure

Resource
Description

Resource Scheduler

Resource Pool

Pattern Based Clustering

Metric Based Clustering

BBULLETPSO Based

Fig. 1 Architecture of BULLET
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7. Resource Provisioner It provides the demanded resources to the workload for

their execution in cloud environment only if required resources are available in

resource pool. If the required resources are not available according to QoS

requirement then the WRM asks to resubmit the workload with QoS

requirement in the form of SLA. After the provisioning of resources, workloads

are submitted to resource scheduler. Then the resource scheduler will ask to

submit the workload for resources provisioned. After this resource scheduler

send back the results to WRM, cloud workload contains the resource

information.

8. Resource Scheduler It will execute all the workloads on provisioned resources

efficiently and described in Sect. 3.2.

Cloud workload is an abstraction of work of that instance or set of instances

executing on the appropriate resources with different QoS requirements submitted

by cloud consumer as a type of application. The types of workload that have been

considered for this research work are: websites, technological computing, endeavor

software, performance testing, online transaction processing, e-commerce, central

financial services, storage and backup services, production applications, software/

project development and testing, graphics oriented, critical internet applications and

mobile computing services [7, 8].

3.1.1 Clustering of Workloads

Based on the important features of Cloud workloads and workload patterns the

clustering of Cloud workloads has been done and process of clustering has been

described in our previous research work in detail [7]. The outcome of pattern based

workload clustering is shown in Table 2.

Further, K-means based clustering algorithm is used for re-clustering the

workloads for execution on different set of resources and process of clustering using

K-means based clustering algorithm has been described in our previous research

work in detail [8]. Final set of workloads is shown in Table 3.

3.2 Resource Scheduling

We have designed particle swarm optimization (PSO) based resource scheduling

algorithm by considering different QoS parameters (execution time, cost and energy

consumption).

3.2.1 Requirements

Following are some important requirements to design an efficient resource

scheduling algorithm:

Efficiency Provisioning of resources offers the facility to reduce the cloud

overheads which requires QoS based efficient management of resources.
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Efficient Resource Usage Efficient scheduling of resources should minimize

wastage of the resources. Different cloud workloads are waiting for execution

should be executed with maximum resource utilization of resources and

optimizing QoS parameters (execution time and cost).

Fair Scheduling The number of resources allotted to every consumer should be

independent of number of cloud workloads each user submits.

Adaptability and Scalability A smart scheduler adapts as per the resources, i.e.

whenever resources join or leave (dynamically), it manages the resources and

workloads’ execution process efficiently.

3.2.2 Problem Formulation

Cloud resource scheduling is a tedious task due to the problem of finding the best

match of resource-workload pair based on the user QoS requirements. The goal of

Cloud workload analyzer is to categorize the workloads and the goal of resource

Table 2 Cloud workloads and their QoS requirements after pattern based clustering

Workload QoS requirements

Websites Reliable storage, high network bandwidth, high availability

Technological computing Computing capacity, reliable storage

Endeavour software Security, high availability, customer confidence level, correctness

Performance testing Execution time, energy consumption and execution cost

Online transaction processing Security, high availability, internet accessibility, usability

E-Com (E-commerce) Variable computing load, customizability

Central financial services Security, high availability, changeability, integrity

Storage and backup services Reliability, persistence

Productivity applications Network bandwidth, latency, data backup, security

Software/project development

and testing

User self-service rate, flexibility, creative group of infrastructure

services, testing time

Graphics oriented Network bandwidth, latency, data backup, visibility

Critical internet applications High availability, serviceability, usability

Mobile computing services High availability, reliability, portability

Table 3 K-means based clustering of workloads

Cluster Cluster name Workloads

C1 Compute Technological computing, performance testing

C2 Storage E-Com and storage and backup services

C3 Communication Websites, critical internet applications, mobile computing services

C4 Administration Endeavour software, online transaction processing, central financial services,

productivity applications, software/project development and testing and

graphics oriented
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scheduler is to map and schedule the workloads effectively and efficiently. The

resources and Cloud workloads can leave and join the Cloud dynamically. Cloud

resources are heterogeneous and dynamic in nature. In this work, independent Cloud

workloads have been considered to handle the realistic scenarios as there are many

scenarios in which the need of scheduling Cloud workloads arises. Firstly, this

problem is suitable to Cloud systems because of the nature of Cloud customers, who

submit Cloud workloads in an independent manner to the system. Secondly, Cloud

systems are most useful for massive parallel processing, in which large amounts of

data are processed independently. In this work, the scheduling of workloads has

been considered from both the Cloud customer and Cloud provider’s point of view.

The user wants to minimize the cost whereas the Cloud provider wants to minimize

the execution time and energy consumption. In this problem, the most popular and

extensively studied optimization criteria, i.e. the minimization of the execution time

has been considered. Execution time is used to indicate the general productivity of

the Cloud systems. Smaller values of execution time and energy consumption

indicate that the scheduler is planning the Cloud workloads in an efficient manner.

Cost is another optimization criterion, which refers to the total cost of the Cloud

workload execution on a particular resource. The problem has been derived to get an

optimal solution.

The problem can be expressed as: to consider this problem, a set of independent

Cloud workloads w1;w2;w3; . . .;wmf g to map on a set of heterogeneous and

dynamic resources r1; r2; r3; . . .; rnf g has been taken. For continuous problem,

R = {rk |1 B k B n} is the collection of resources and n is the total number of

resources. W = {wi|1 B i B m} is the collection of Cloud workloads and m is the

total number of Cloud workloads. The estimated time to compute the value of each

Cloud workload on each resource is assumed to be given by the consumer-supplied

information (data-driven). Under the Predictable Time to Compute (PTC), the

following assumptions have been considered:

1. Each Cloud workload to be scheduled for application’s execution has a unique

workload id.

2. Cloud workloads are independent.

3. Arrival of Cloud workloads for execution of application is random and Cloud

workloads are placed in a queue of unscheduled Cloud workloads.

4. The processing speed of the resources is measured in Multiple Instructions Per

Second (MIPS) as per the Standard Performance Evaluation Corporation

(SPEC) benchmark.

5. The processing requirement of a Cloud workload is measured in Million

Instructions (MIs).

6. Execution time for every Cloud workload on a resource is obtained from

objective function. [Number of workloads 9 number of resources] for every

workload on resources is calculated from PTC matrix. Columns of PTC matrix

demonstrate the estimated execution time for a specific resource while rows on

PTC matrix demonstrate the execution time of a workload on every resource.

PTC ðwi; rkÞ is the expected execution time of workload wi and the resource rk:
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3.2.3 Objective Function

In Cloud computing, provider wants to minimize the execution time and energy

consumption while user wants to minimize the cost for Cloud workload. The goal of

an objective function is to optimize the QoS parameters (execution cost, time and

energy consumption) for finishing all n workloads of a given Bulk of Workloads

(BoW). This objective function successfully captures the compromise among QoS

parameters as specified in Eq. (1). Further formally, the workload assignment

problem with the energy, cost and time function of each resource r can be generally

formulated as follows:

Fitness value ¼ a executioncost þ b executiontime þ c energyconsumption ð1Þ

where 0� a\1, 0� b\1 and 0� c\1 are weights to prioritize components of

fitness function.

(a) Execution Cost (executioncost) It is the cost spend to execute workload and

measured in terms of Cloud Dollars (C$):

executioncost ¼ min c rk;wið Þð Þ for 1� k� n and 1� i�m ð2Þ

where cðrk;wiÞ is the cost of workload wi which executes on resource rk as

defined below:

c rk;wið Þ ¼
X

wi2W

completion wi;rk
� �

completionm wið Þ �W

� �
ð3Þ

W is the collection of cloud workloads.

c rk;wið Þ ¼ 1

W

X

wi2W

completion wi;rk
� �

completionm wið Þ

� �
ð4Þ

where as:

completionm wið Þ ¼ max
wi2W;rk2R

completion wi;rk
� �

ð5Þ

executiontime ¼ min Lwi
ð Þwi 2 W ð6Þ

(b) Execution Time (executiontime) It is the finishing time Lw of the latest

workload and can also be represented as PTC workload wi on resource rk.

Before estimation of execution time, completion time of a resource should be

defined. Completion time can be defined as the time in which resource can

finish the execution of all the previous workloads in addition to the execution

of workload wi on resource rk as described as:

completion rkð Þ ¼ available timerk � PTCm wið Þ ð7Þ

where as:

PTCm wið Þ ¼ max
wi2W;rk2R

PTC wi;rk
� �

ð8Þ
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(c) Energy Consumption (EC) The energy model is devised on the basis that

resource utilization has a linear relationship with energy consumption [22].

Energy Consumption of using resources can be expressed as the following

formula (Eq. 9):

EC ¼ ECDatacenter þ ECTransceivers þ ECMemory þ ECExtra ð9Þ

ECDatacenter represents the datacenter’s energy consumption, ECTransceivers

represents the energy consumption of all the switching equipment. ECMemory

represents the energy consumption of the storage device. ECExtra represents

the energy consumption of other parts, including the fans, the current

conversion loss and others. ECt;i is the energy consumption at given time t is

defined in (Eq. 10):

ECt;i rð Þ ¼ q� ECmax þ 1� qð Þ � ECmax � ru ð10Þ

where ECmax is maximum energy consumption while resource is fully

utilized, q is fraction of energy consumed by idle resource and ru is resource

utilization. Resource utilization is change over time and it is function of time

and presented as ru tð Þ. For a resource rt at given time t, the resource

utilization ResUt is defined as (Eq. 11):

ResUt ¼
Xn

i¼1

ECt;i ru tð Þð Þdt ð11Þ

where n is the number of cloud workloads running at time t. The actual

energy consumption ECactual of a resource rut at given time t is defined as

(Eq. 12):

ECactual ¼ ECmax � ECminð Þ � ResUt þ ECmin ð12Þ

where ECmax is the energy consumption at the peak load (or 100% utilization)

and ECmin is the minimum energy consumption in the active/idle mode (or as

low as 1% utilization).

3.2.4 Particle Swarm Optimization

Particle swarm optimization (PSO) is a group based intelligence algorithm which is

inspired by the social behavior such as school of fish defending themselves from a

hunter (predator) or group of birds finding a source of food [23]. Population in PSO

algorithm is defined as the total number of particles in a problem space and particles

in population are initialized randomly. In every generation, fitness value of every

particle is estimated by a fitness function to be improved. Both the positions of the

particle is known: (1) best position (local best i.e. LBP) of a particle and (2) global

best [the best position so far among the whole group of particles ðGBPÞ]. GBP is s the

best particle in terms of fitness in an whole population, whereas LBP of a particle is

the best result (fitness value) so far reached by the particle. Particle’s position and

velocity is updated in every generation by using (Eq. 1).
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PSO optimization technique which works based on global search. There is no

straight re-combination of individuals of the population in algorithm of PSO like

other population-based algorithms (or evolutionary algorithms) such as GA (Genetic

Algorithm) etc. Algorithm of PSO is dependent on particle’s social behavior. Every

individual particle regulates its path based on the position of the best particle (global

best) of the whole population and its best position (local best) in every generation.

Stochastic nature of the particle increases due to this property of PSO and touches

rapidly to global minima with a realistic noble solution [23]. PSO has become

prevalent due to its easiness and its usefulness in extensive range of application with

little cost of computation. Applications like pattern recognition, reactive data

mining etc. have used PSO mostly. Along with these applications PSO has been

solved various NP-Hard problems like workload allocation and resource scheduling.

PSO Terminology The PSO terminology used in this research paper is described

below:

(a) Particle A particle in particle swarm optimization is similar to a fish or bird

flying through a search space (problem area). Every particle’s movement is

synchronized by a velocity which has both direction and magnitude. Position

of every particle at any time instance is influenced by its best position (LBP)

and the position of the best particle (GBP) in a search space. Fitness value is

used to measure the performance of a particle, which is problem oriented. For

this research work, a workload is considered as a particle.

(b) Population Size In this research work, size of set of workloads (number of

workloads considered as a population size).

(c) Random Velocity Every particle’s movement is the composition of an initial

random velocity and two randomly weighted effects: (1) the affinity to return

to the best previous position of particle and (2) the affinity to move towards

the best previous position of neighborhood. Based on these two affinities of

workload, the mapping of workload with resources is done. Workload will be

executed only with that resource which has high value of fitness.

(d) Particle Velocity It is calculated based on the probability distribution for the

particle position, that is, the particle (workload) position in a dimension is

randomly generated using that distribution.

(e) Particle Position Current state of particle (workload), state may be

submission state, waiting state, ready state, execution state and completion

state.

(f) Global Best Position (GBP) Best position of particle (workload) among the

whole group of particles (set of workloads).

(g) Local Best Position (LBP) Best position of particle (workload) as reached by

the particle (workload regulates its path based on its best resource which

executes workload with minimum fitness value).

PSO Based Resource Scheduling Algorithm In this section, we present the pseudo

code of PSO-based algorithm for resource scheduling in the Cloud environment.

Each particle in genome is a partial solution and is represented as a resource

identifier (e.g. select, move, swap, drop) or a sequence of resource identifiers. The
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non-PSO based resource identifier can be simple or complex and are implemented

as follows:

(a) Workload selection and scheduling: the resource identifiers select workload

from the unscheduled list and schedule it into the best available resource.

(b) Try for the best combination of all workloads and resources until the best

combination is found.

(c) Move workload (wi) from its current resource/schedule.

(d) Swap workloads: select the workloads randomly which can swap.

(e) Remove a randomly selected workload from workload queue already

scheduled.

This is the only heuristic which will move the search into an infeasible region

because any workload may be unscheduled. We make sure that the search can move

back into its feasible region by un-scheduling workload that has other valid

resources so that it can move into the next iteration. The non-PSO based resource

identifier is then applied so as to find an optimal solution of the problem instance.

The objective of PSO is to find the best resource identifier that generates the best

solution for resource scheduling problem. The selection process of non-PSO based

resource identifier stops after a pre-defined number of iterations. We set a fixed

number of iterations to keep the computation time low. The particle rejects the new

solution if it is poorer than the current solution. The pseudo code of PSO based

resource scheduling algorithm in Fig. 2.

• A resource list is then obtained from the resource provisioning unit after

provisioning of user’s workloads [7]. Once the resource list has been obtained, a

workload list and a random feasible solution are initialized.

• The task to choose the best heuristic from low-level heuristics is started.

• We have a number of workloads, each of which represents a resource identifier

supplied with an initial solution in the solution space and an access to the

evaluation function.

• Workload’s position and Workload’s velocity would be randomly initialized.

• It will then select a low-level heuristic at each workload position and compute

its fitness function i.e. Fitness (LBP).

• If at Pp; Fitness (LBP) is better than Fitness (GBP) then GBP takes the value of

LBP.

• We will try to find the Fitness value at best global position of the workload.

• After a workload has been chosen from the population, its position and velocity

would be updated using (Eq. 1). Then, its fitness at the new position is

calculated and compared with its previous position.

• If it is better than the local best value then we will assign workload’s current

position to the local best value.

• Now, we will compare fitness at LBP and GBP. If the fitness at LBP is better than

at GBP then we will assign the value of LBP to GBP.

• After selection of a low-level heuristic, it is then applied to the problem.

Resource scheduling is performed till there are no unscheduled jobs in the

queue.
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3.3 Cloud Workload Execution Design

There are eight different classes created to represent the interaction among different

workload related entities. Workloads are scheduled to the appropriate resources

based on the workload description by taking care of QoS. Fitness value for every

workload is calculated and analysed. Schedule the resources to cloud workloads and

execute within the defined budget and desired deadline with minimum energy

consumption. The interaction among different classes for workload execution is

shown in Fig. 3. In the course of its lifetime, a workload passes through many states

as is outlined in Fig. 4. A workload is an input to the scheduler which allocates it to

a set of provisioned resources based on its requirements. The workload’s status is

then changed to SCHEDULED. During the STAGE_IN state, input files and

executables required for the workload are staged to the available provisioned

Algorithm 1: PSO based Resource Scheduling Algorithm
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

Input Data: Number of workloads and number of available resources.
Result: Mapping of the each workloads to the resources.
start

initialize Resource list [Number of Resources]
initialize Workload List [Number of Jobs]
initialize a random feasible solution
S= The number of particles in the population
PS = Population Size
RV = Random Velocity

= Particle Velocity
= Particle Position
= Population
= Global Best Position
= Local Best Position

for i = 1 To Populationsize do
← RV()
← Random_Position (PS)
←

For each particle, calculate the fitness value using [Eq. 1] 
if Fitness ( ) ≥ Fitness ( ) then

← 
while maximum iteration is not satisfied do

for P do
← UpdateVelocity ( , )
← UpdatePosition ( )

if Fitness ( ) ≤ Fitness( )
then

← 
if ( ) ≤ Fitness( ) then

← 
Return ( )
while there are unscheduled workloads in the queue do

for every resource is in resource list do
get the next workload from queue
schedule the workload on the resource on the basis of fitness

Repeat each and every step till all the workloads are allocated
End

Fig. 2 PSO based resource scheduling algorithm
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resource. When this process is completed successfully, then a workload is

considered to be SUBMITTED. The workload may be queued while waiting for

an available processor and its state changes to PENDING. When the workload starts

its execution, it is considered ACTIVE. After the workload has finished executing, it

enters the STAGE_OUT stage where its output files are transferred back to the

broker. If all its outputs are received and are as expected by the task requirements,

then the workload is considered as ‘‘DONE’’. If one of state transition fails on the

available side or the workload is completed on the available side but has not

produced the expected result files, then it is considered FAILED and is reset and

marked for re-scheduling.

3.4 QoS Metrics

The following other metrics (Eqs. 13–18) are selected from our previous work [7–9]

to measure the value of QoS parameters other than energy, cost and time.

1 1

1 0…..*
1

+ Cluster

ClusterName: String

+ WorkloadFitnessFunction

+Calculate (cost, time, energy)

+ CalculateFitnessValue

+Calculate (cost, time, energy)

+ WorkloadCluster

– Instance: WorkloadCluster        
–Worklods:List<wWorkloads>                                        
–resources:List<rResources>

+ getInstance(): WorkloadCluster              
+getWorkload():List<wWorkloads>               
+getResources():List<rResources>          
+CreateCluster(workloads:List, resource:List): List WorkloadToResourceMapping

+WorkloadWrapper

+WrapWorlkload()

+ Workload

+Workloadid:Int 
+WorkloadName:String 
+WorkloadType:String

+Submit()             
+Execute()

+ workloadDescriptionAnalyzer

+AnalyzeworkloadDescription (workloadDescFile:String):List<workload>

+ workloadDescription

+WorkloadName: String                                                                                     
+WorkloadProcessingCapacity: Double                                                                        
+CostPerHour: Double

+WorkloadDescription(WorkloadName:String, ProcessingSpeed: double, CostPerHour:double)
+getWorkloadName(): String                                                                                      
+setWorkload(name:String)                                                                             
+getProcessingCapacity():Double             
+setProcessingCapacity(PC: Double)                                                                                           
+getCostPerHour(): Double                                        
+setCostPerHour(CPH: Double)

Fig. 3 Interaction among different classes for workload execution
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Availability (A) It is a ratio of Mean Time Between Failure (MTBF) to addition of

Mean Time Between Failure (MTBF) and Mean Time To Repair (MTTR). We

have used following formula to calculate availability (Eq. 13).

A ¼ MTBF

MTBF þMTTR
ð13Þ

where Mean Time Between Failure (MTBF) is ratio of total uptime to number of

breakdowns (Eq. 14).

MTBF ¼ Total Uptime

Number of Breakdowns
ð14Þ

Reset for rescheduling

Workload is mapped to available  resource

Start copying inputs

[No]

[Yes]

Finished copying outputs

Ready

Scheduled

Finished copying inputs

Workload is Queued

Failed

Stage_In

Submitted Pending

Active

Stage_Out

Done

Workload is dispatched to 
remote resource

Remote Execution

Workload Starts
Running

Workload Starts
Running

Start copying outputs

?

Workload is Completed Successfully?

Fig. 4 Different stages for cloud workload
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where Mean Time To Repair (MTTR) is ratio of total downtime to number of

breakdowns (Eq. 15).

MTTR ¼ Total Downtime

Number of Breakdowns
ð15Þ

Reliability (re) Reliability of the resource has to be checked for scheduling of the

resources. With the help of reliability parameter, we can check the fault tolerance

of the resource. Reliability of the resource is calculated with the following

formula (Eq. 16) as:

re ¼ e�kt ð16Þ

re = reliability of resource, e = exponential function, t = time for resource to

deal with its request for any workload’s execution and k = the failure rate of the

resource at the give time.

Resource Utilization (RU) It is a ratio of execution time of a workload executed

by a particular resource to total uptime of that resource. We have used following

formula to calculate resource utilization (Eq. 17).

RU ¼
Xn

i¼1

execution time of aworkload executed ith resource

total uptime of ith resource

� �
ð17Þ

where n is number of workloads.

Latency (L) It is defined as a difference between expected execution time and

actual execution time. We have used following formula to calculate Latency

(Eq. 18):

L ¼
Xn

i¼1

Expected Execution Timei � Actual Execution Timeið Þ ð18Þ

where n is number of workloads.

4 Experimental Setup and Results

We modeled and simulated a cloud environment using CloudSim [6]. We simulated

computing nodes that resembles configuration of resources shown in Table 4. The

workload is modeled as processing of images to convert from one format to another

(e.g., converting from JPEG to PNG format). The characteristics of resources and

cloudlets that have been used for all the experiments has been described in our

previous research work [7, 8]. User cloud workloads are modeled as independent

parallel applications which are computation intensive. Thus the data dependency

among the cloud workloads in the parallel applications is negligible. Each cloud

workload is parallel and is hence considered to be independent of any other cloud

workload. In this experimental setup, three different cloud platforms are used:

Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a

Service (IaaS) as shown in Fig. 5.
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At SaaS level, Microsoft Visual Studio 2010 is used to develop Cloud Workload

Management Portal (CWMP) to provide user interface in which user can access

service from any geographical location. At PaaS level, Resource Manager [9, 23] is

used as a scalable cloud middleware to make interaction between IaaS and SaaS,

and continually monitor the performance of the system. A task is a single unit of

work processed (request) in a node. It is independent from other tasks that may be

executed on the same or any other node at the same time. At IaaS level, three
different servers (consist of virtual nodes) have been created and SQL Server has

been used for data storage. Scheduler as shown in Fig. 5, runs at IaaS level on

Server. Computing nodes used in this experiment work are further categorized into

three categories as shown in Table 4.

User 
Workloads

Provisioned      Resources                   

Resource Scheduler

Scheduling Policy

Workload Execution

Resource Pool

Workload Info

Workload 
Execution Info

Workload 

Executed 
Workload

PSO Based

Resource Provisioning

Q-aware

Workload 
Analyzer

Resource 
Manager

Fig. 5 Cloud testbed

Table 4 Configuration details

Resource_Id Configuration Specifications Operating

system

Number

of

virtual

node

Number

of ECs

Price

(C$/EC

time unit)

R1 Intel Core 2

Duo—2.4 GHz

1 GB RAM and

160 GB HDD

Windows 6 18 2

R2 Intel Core i5-

2310—2.9 GHz

1 GB RAM and

160 GB HDD

Linux 4 12 3

R3 Intel XEON E

52407—2.2 GHz

2 GB RAM and

320 GB HDD

Linux 2 6 4
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The execution cost is calculated based on user workload and deadline (if deadline

is too early (urgent) it will be more costly because we need a greater processing

speed and free resources to process particular workload with urgency. There

individual price is fixed (artificially) for different resources because all the resources

are working in coordination manner to fulfill the demand of user (demand of user is

changing dynamically). Experiment setup using 3 servers in which further virtual

nodes (12 = 6 (Server 1) ? 4 (Server 2) ? 2 (Server 3)) are created. Every virtual

node has different number of Execution Components (ECs) to process user

workload and every EC has their own cost (C$/EC time unit (Sec)). Table 4 shows

the characteristics of the resources used and their Execution Component (EC) access

cost per time unit in Cloud Dollars (C$) and access cost in C$ is manually assigned

for experimental purposes. The access cost of an EC in C$/time unit does not

necessarily reflect the cost of execution when ECs have different capabilities. The

execution agent needs to translate the access cost into the C$ for each resource.

Such translation helps in identifying the relative cost of resources for executing user

workloads on them.

Due to limited number of resources, cost increases with increase in user

workloads. Cost is varying in two different cases: (1) relaxed deadline and (2) tight

deadline. In both cases, when the deadline is low (e.g. 200 s), the number of user

workloads processed increases as the budget value increases. When a higher budget

is available, the execution agent uses expensive resources to process more user

workloads within the deadline. Alternatively, when scheduling with a low budget,

the number of user workloads processed increases as the deadline is relaxed.

Execution agent allocates as many user requests as the first cheapest resource can

complete by the deadline, and then allocates the remaining user workloads to the

next cheapest resources. When the deadline is tight (e.g. 100), there is high demand

for all the resources in a short time. All the resources are used up so long as budget

is available to process all user workloads within the deadline. However, when the

deadline is relaxed (e.g. 700 s), it is likely that all user workloads can be completed

using the first few cheapest resources. As the deadline increases, execution agent

schedules user workloads on the available resources to finish earlier as possible. The

aim of this performance evaluation is to demonstrate that it is feasible to implement

and deploy the proposed technique on real cloud resources. The key components of

the cloud environment are: user interface (CWMP), workload analyzer and resource

scheduler. Figure 6 enables the understanding of the cloud based environment in

which the proposed technique is implemented.

4.1 Performance Evaluation

In order to evaluate the performance of BULLET, we have compared the value of

QoS parameters (execution time, cost, energy consumption, reliability, availability,

latency and resource utilization) of BULLET with existing PSO based cloud based

resource scheduling techniques (PSO-HPC [19], PSO-SW [20] and PSO-DVFS

[21]) and all the three existing techniques have been described in Sect. 2.2. Formals

used to measure the value of QoS parameters have been described in Sect. 3. We

have performed experiments to determine the effect of an increase in number of
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workloads and resources on QoS parameters such as energy consumption, cost and

time. All the experiments were started with workload name: Performance Testing

[Processing Larger Image File of Size 713 MB], in which BULLET converts an

image file from JPEG format to PNG format. Conversion of a single JPEG file

into PNG is considered as a single workload. We have created the PTC matrix

which is computed as ratio of workload and computing capacity of virtual machines.

4.2 Experimental Results

Experiment has been conducted with different number of cloud workloads (15–90)

for verification of QoS parameters.

Test Case 1: Energy Consumption Versus Number of Workloads By increasing the

number of cloud workloads, the value of energy consumption is increasing. The

minimum value of energy consumption is 69 kWh at 15 cloud workloads for

BULLET. BULLET performs better than PSO-HPC, PSO-SW and PSO-DVFS in

terms of energy consumption at different number of cloud workloads as shown in

Fig. 7. The average value of energy consumption in BULLET is 7.61, 11.45 and

17.19% lesser than PSO-HPC, PSO-SW and PSO-DVFS respectively.

Test Case 2: Execution Cost Versus Number of Workloads With the increase in

number of workloads, execution cost rises as shown in Fig. 8. As per the number of

workloads increases, BULLET performs better than PSO-HPC, PSO-SW and PSO-

DVFS. BULLET outperforms as it adjusts the resources at runtime according to the

Submit Workload Details (Name and Type)
Get Workload Details 
Processed Workload Details 

Ask Budget and Deadline Info
Provide Budget and Deadline Info

Get Budget and Deadline Information
Generate Tentative Workload Schedule

Get Workload Execution Schedule 
Confirm 

Get Confirmation
Estimate Execution Charges

Get Execution Charge Estimation
Confirm
Fill SLA

Submit Signed SLA
Get Signed SLA

Approved SLA  
Request for Payment                                                           
Pay Required Amount

Schedule Resources
Execute Workloads 

Monitor QoS Variation 
<<Workloads Executed Successfully>>

Resources Scaled Back 
Return Experimental Data

:Cloud_User :Workload_Analyser :Resource_Manager

Fig. 6 Workload execution
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QoS requirements of workload. The minimum cost used in BULLET is 171 C$ at 15

workloads and maximum is 416 C$ at 90 workloads. The average value of

execution cost in BULLET is 3.16, 4.72 and 9.16% lesser than PSO-HPC, PSO-SW

and PSO-DVFS respectively.

Test Case 3: Execution Time Versus Number of Workloads As shown in Fig. 9, the

execution time increases with increase in number of workloads. At 30 workloads,

execution time in BULLET is 6.69% lesser than PSO-HPC, 7.12% lesser than PSO-

SW and 7.59% lesser than PSO-DVFS. At 90 workloads, execution time in

BULLET is 8.72% lesser than PSO-HPC, 11.39% lesser than PSO-SW and 14.79%

lesser than PSO-DVFS. Figure 9 show that execution time varies in same ratio but

BULLET performs better than PSO-HPC, PSO-SW and PSO-DVFS.

The number of workloads considered for Test Case 4, Test Case 5 and Test Case

6 is 90.

Test Case 4: Energy Consumption Versus Number of Resources By increasing the

number of resources, the value of energy consumption increases. The minimum

value of energy consumption is 22 kWh at 6 resources for BULLET. BULLET

performs better than PSO-HPC, PSO-SW and PSO-DVFS in terms of energy

consumption at different number of resources as shown in Fig. 10. The average
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value of energy consumption in BULLET is 4.41, 8.54 and 12.36% lesser than PSO-

HPC, PSO-SW and PSO-DVFS respectively.

Test Case 5: Execution Cost Versus Number of Resources With the increase in

number of resources, execution cost rises as shown in Fig. 11. As per the number of

resources increases, BULLET performs better than PSO-HPC, PSO-SW and PSO-

DVFS. The cause is that BULLET adjusts the resources at runtime according to the

QoS requirements of workload. The minimum cost is used in BULLET is 45 C$ at 6

resources and maximum is 137 C$ at 36 resources. The average value of execution

cost in BULLET is 5.41, 6.26 and 8.78% lesser than PSO-HPC, PSO-SW and PSO-

DVFS respectively.

Test Case 6: Execution Time Versus Number of Resources As shown in Fig. 12,

the execution time decreases with increase in number of resources. At 18 resources,

execution time in BULLET is 7.42% lesser than PSO-HPC, 8.91% lesser than PSO-

SW and 12.52% lesser than PSO-DVFS. At 36 resources, execution time in

BULLET is 3.49% lesser than PSO-HPC, 4.64% lesser than PSO-SW and 7.93%

lesser than PSO-DVFS. Figure 12 show that execution time varies in same ratio but

BULLET performs better than PSO-HPC, PSO-SW and PSO-DVFS.
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Test Case 7: Availability We have calculated the percentage of availability for

BULLET and existing scheduling algorithms (PSO-HPC, PSO-SW and PSO-DVFS)

with different number of cloud workloads. With increasing the number of cloud

workloads, the percentage of availability is decreasing. The percentage of

availability in BULLET is more as compared to PSO-HPC, PSO-SW and PSO-

DVFS at different number of cloud workloads as shown in Fig. 13. The maximum

percentage of availability is 88.7% at minimum number of cloud workloads. At 75

workloads, percentage of availability in BULLET is 7.42% more than PSO-HPC,

9.91% more than PSO-SW and 13.72% more than PSO-DVFS.

Test Case 8: Reliability We have calculated the percentage of reliability for

BULLET and existing scheduling algorithms (PSO-HPC, PSO-SW and PSO-DVFS)

with different number of cloud workloads. By increasing the number of cloud

workloads, the percentage of reliability is decreasing. The percentage of reliability

in BULLET is more as compared to PSO-HPC, PSO-SW and PSO-DVFS at

different number of cloud workloads as shown in Fig. 14. The maximum percentage

of reliability is 94.65 at 15 cloud workloads. At 60 workloads, percentage of

reliability in BULLET is 4.91% more than PSO-HPC, 8.76% more than PSO-SW

and 17.22% more than PSO-DVFS.

0
20
40
60
80

100
120
140
160
180
200

6 12 18 24 30 36

E
xe

cu
tio

n 
C

os
t (

C
$)

 

Number of Resources 

BULLET

PSO-HPC

PSO-SW

PSO-DVFS

Fig. 11 Effect of execution cost with change in number of resources

0

50

100

150

200

250

6 12 18 24 30 36

E
xe

cu
tio

n 
T

im
e 

(S
ec

on
ds

) 

Number of Resources 

BULLET

PSO-HPC

PSO-SW

PSO-DVFS

Fig. 12 Effect of execution time with change in number of resources

384 J Netw Syst Manage (2018) 26:361–400

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Test Case 9: Resource Utilization With increasing number of cloud workloads, the

percentage of resource utilization is increasing. The percentage of resource

utilization in BULLET is more as compared to PSO-HPC, PSO-SW and PSO-DVFS

at different number of cloud workloads as shown in Fig. 15. The maximum

percentage of resource utilization is 88.4% at 90 cloud workloads and minimum

percentage is 71.96 at 15 workloads in BULLET but BULLET performs better than

PSO-HPC, PSO-SW and PSO-DVFS for any number of workloads.

Test Case 10: Latency With increasing number of cloud workloads, the value of

latency is increasing. The value of latency in BULLET is lesser as compared to

PSO-HPC, PSO-SW and PSO-DVFS at different number of cloud workloads as

shown in Fig. 16. The minimum value of latency is 1.24 s at 15 cloud workloads

and maximum is 9.13 s at 90 cloud workloads in BULLET. At 15 workloads,

latency in BULLET is 2.23% lesser than PSO-HPC, 1.91% lesser than PSO-SW and

5.66% lesser than PSO-DVFS but at 90 workloads, latency in BULLET is 6.11%

lesser than PSO-HPC, 14.92% lesser than PSO-SW and 17.59% lesser than PSO-

DVFS.

Test Case 11: Convergence of PSO Figure 17 plots the convergence of total cost

computed by PSO over the number of iterations for different value of Resource

Utilization (RU): 85, 75 and 65% by executing different number of workloads.
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Initially the workloads are randomly initialized. Therefore, the total initial cost is

very high at 0th iteration. As the algorithm progresses, the convergence is drastic

and achieves global minima very quickly. The number of iterations required for the

convergence is seen to be 50–60, for our cloud environment.

0
10
20
30
40
50
60
70
80
90

100

15 30 45 60 75 90

R
es

ou
rc

e 
U

til
iz

at
io

n 
(%

)

Number of Workloads

BULLET

PSO-HPC

PSO-SW

PSO-DVFS

Fig. 15 Effect of change in number of workloads submitted on resource utilization

0
2
4
6
8

10
12
14
16

15 30 45 60 75 90

L
at

en
cy

 (S
ec

on
ds

)

Number of Workloads

BULLET

PSO-HPC

PSO-SW

PSO-DVFS

Fig. 16 Effect of change in number of workloads submitted on latency

0
20
40
60
80

100
120
140
160
180
200

0 5 10 15 20 25 30 35 40 45 50 55 60

C
os

t (
C

$)

Number of Iterations

RU = 65%

RU = 75%

RU = 85%

Fig. 17 Convergence curve of total cost

386 J Netw Syst Manage (2018) 26:361–400

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Table 5 describes the comparison of execution cost, execution time and energy

consumption used to process same number of workloads (50 workloads of same

type) on cloud environment for PSO-HPC [19], PSO-SW [20] and PSO-DVFS [21].

In this experiment, we have considered three different cloud infrastructures with

different processor configurations (2 core processor, 4 core processor, 8 core

processor and 16 core processor) to measure the variation of execution cost,

execution time and energy consumption.

Figures 18, 19, 20, 21, 22, 23 and 24 describes the comparison of QoS

parameters (execution cost, execution time, energy consumption, availability,

resource utilization, latency and reliability) used to process different number of

workloads (45 and 90) on cloud environment for BULLET with different number of

Virtual Machines (VMs). The number of VMs used to execute the workloads was

incremented gradually showing how the QoS parameters are optimized when more

VMs were added to the cloud. As shown in Figs. 18, 19, 20, 21, 22, 23 and 24, with

one virtual node running on Server R1, execution of 45 workloads finished in

636.12 s. With 12 virtual nodes (6 running on R1, 4 running on R2 and 2 running on

R3), the application took 476.16 s. We note that the execution time is reduced by

adding additional virtual nodes.

The value of reliability, availability, resource utilization, latency, execution time,

execution cost and energy consumption has been calculated for 45 and 90 cloud

workloads with different number virtual machines (VM nodes). By increasing the

number of VMs, the percentage of reliability is increasing. The percentage of

reliability with 45 workloads is more as compared to 90 Cloud workloads as shown

in Fig. 18. The maximum percentage of reliability is 94.65 at 12 VMs.

By increasing the number of VMs, the percentage of availability is increasing as

shown in Fig. 19. The percentage of availability with 90 workloads is lesser as

compared to 45 cloud workloads. The maximum percentage of reliability is 93.46

for 45 workloads and 92.44 for 90 workloads at 12 VMs.

As shown in Fig. 20, the percentage of resource utilization with 90 workloads is

more as compared to 45 workloads. The maximum percentage of resource

utilization is 89.68 at 90 workloads and minimum percentage is 88.41 at 45

workloads with 12 VMs.

As shown in Fig. 21, the execution time decreases with increase in number of

VMs. At 45 workloads, execution time is lesser than 90 workloads. Figure 21 shows

that the execution time reduces rapidly in 90 workloads as compared to 45

workloads.

With the increase in number of VMs, execution cost rises as shown in Fig. 22.

The minimum cost used is 47.58C$ at 45 workloads and 322.31 C$ at 90 workloads

with 1 VM. The average value of execution cost at 45 workloads is 22.16% lesser

than 90 workloads.

With increasing the number of VMs, the value of latency is decreasing as shown

in Fig. 23. Initially, the value of latency is more for 90 workloads with 1 VM. At 12

VMs, maximum resources are utilized and value of latency for both 45 and 90

workloads is approximately same.

By increasing the number of VMs, the value of energy consumption increases as

shown in Fig. 24. The minimum value of energy consumption is 20.25 kWh for 45
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workloads at 1 VM. The average value of energy consumption with 45 workloads is

22.36% lesser 90 workloads.

4.3 Statistical Analysis

Statistical significance of the results has been analyzed by Coefficient of Variation

(cv), a statistical method. cv is statistical measure of the distribution of data about the

mean value. cv is used to compare to different means and furthermore offer an

overall analysis of performance of the technique used for creating the statistics. It
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states the deviation of the data as a proportion of its average value, and is calculated

as follows (Eq. 19):

cv ¼
SD

M
� 100 ð19Þ

where SD is a standard deviation and M is mean. cv of execution time, cost and

energy consumption has been studied of Cloud workload of proposed technique

(BULLET) and existing algorithms (PSO-HPC, PSO-SW and PSO-DVFS) as shown

in Figs. 25, 26 and 27.
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cv calculated for execution time and cost results attained by proposed algorithm

and existing algorithms. Range of cv (0.25–1.69%) for execution time (0.37–1.96%)

for cost and (0.61–2.47%) for energy consumption approves the stability of

BULLET as shown in Figs. 25, 26 and 27. Small value of cv signifies BULLET is

more efficient in resource scheduling in the situations where the number of cloud

workloads has changed. Value of cv decreases as the number of workloads is

increasing. Statistical analysis demonstrates the BULLET outperforms existing

scheduling algorithms for large numbers of cloud workloads. With small value of cv
system is more stable and BULLET attained the best results in the cloud for cost and

execution time as QoS parameters.

The statistical analysis of QoS parameters (Figs. 18, 19, 20, 21, 22, 23, 24) is

described in Table 6. The number of samples considered is 12. The value of

confidence interval is calculated using IBM SPSS 24. Table 6 lists the 95%

Confidence Intervals and the estimations of the medians of the differences of the

values of QoS parameters of the servers with 45 and 90 workloads. From the

Table 6, we can see that the estimated error (the pseudo-median of the differences)
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is less than 3% for all characteristics. This is representative of the fact, the mean

value of all the QoS parameters with 95% confidence interval from its lower value

to upper value.

The variation of mean value of execution cost with different number of

workloads and number of VMs is shown in Fig. 28. With increasing the number of

VMs, the execution cost increases. It is clearly shown that the execution cost for 15

workloads is 31.82% lesser than 90 workloads with 2 VMs. For 60 workloads,

execution cost with 12 VMs is 22.61% more than 2 VMs.

Figure 29 shows the variation of mean value of latency with different number of

workloads and number of virtual nodes. It clearly shows the latency for 15

workloads is 42.52% lesser than 90 workloads with 2 VMs. With increasing the
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number of workloads, the latency increases but due to increasing in number of VMs,

latency decreases. For 90 workloads, latency with 12 VMs is 27.92% lesser than 2

VMs.
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Fig. 28 Statistical analysis of execution cost

Table 6 Statistical analysis of QoS parameters

QoS parameter Number of

workloads

SD Standard

error mean

95% confidence interval

of the difference

Mean

value

Lower Upper

Execution time (s) 45 53.34805 15.40026 532.6884 600.4799 566.5842

90 100.56821 29.03154 1190.6220 1318.4180 1254.52

Execution cost (C$) 45 55.75 16.09364 958.2748 166.1185 130.6967

90 49.34614 14.24500 369.6428 432.3489 400.9958

Latency (s) 45 2.61545 0.75502 6.3633 9.6869 8.0251

90 3.90714 1.127889 9.2759 14.2408 11.7583

Availability (%) 45 1.65032 0.47641 89.8914 91.9886 90.94

90 3.19012 0.92091 85.1339 89.1877 87.1608

Reliability (%) 45 4.92129 1.42065 83.6493 89.9030 86.7762

90 3.29977 0.95256 80.6493 84.2875 82.1909

Resource utilization

(%)

45 4.97449 1.43601 78.2951 84.6164 81.4557

90 3.45959 0.99870 81.7377 86.1340 83.9358

Energy consumption

(kWh)

45 31.37344 9.05673 49.2559 89.1234 69.1897

90 38.66417 11.16138 183.3145 232.4465 207.8805
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The variation of mean value of availability with different number of workloads

and number of VMs is shown in Fig. 30. With increasing the number of VMs, the

availability increases. It is clearly shown that the availability with 12 VMs is 4.25%

more than 2 VMs for 15 workloads. With increasing the number of workloads, the

availability decreases. The availability for 90 workloads is 7.52% lesser for 45

workloads with 12 VMs.
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Figure 31 shows the variation of mean value of reliability with different number

of workloads and number of virtual nodes. With increasing the number of VMs, the

reliability increases. It is clearly shown that the availability with 12 VMs is 7.61%

more than 2 VMs for 30 workloads. With increasing the number of workloads, the

reliability decreases. The reliability for 75 workloads is 6.96% lesser for 15

workloads with 12 VMs.

The variation of mean value of resource utilization with different number of

workloads and number of VMs is shown in Fig. 32. With increasing the number of
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VMs, resource utilization decreases. It is clearly shown that the resource utilization

for 30 workloads is 9.42% more than 75 workloads with 6 VMs. With increasing the

number of workloads, resource utilization increases. For 60 workloads, resource

utilization with 12 VMs is 4.61% lesser than 2 VMs.

Figure 33 shows the variation of mean value of energy consumption with

different number of workloads and number of virtual nodes. It is clearly shown that

the energy consumption increases with increasing the number of VMs and number

of workloads. Energy consumption for 15 workloads is 14.75% lesser than 90

workloads with 2 VMs. With 12 VMs, energy consumption for 90 workloads is

17.56% more than 15 workloads.

Figure 34 shows the variation of mean value of execution time with different

number of workloads and number of virtual nodes (VMs). It clearly shows the

execution time for 15 workloads is 34.152% lesser than 90 workloads with 2 VMs.

With increasing the number of VMs, the execution cost decreases. For 90

workloads, execution time with 12 VMs is 25.44% lesser than 2 VMs.

4.4 Discussions

The performance of proposed PSO based resource scheduling technique (BULLET)

has been compared with the existing scheduling algorithms (PSO-HPC, PSO-SW

and PSO-DVFS). The performance of BULLET has been analyzed with different

number of cloud workloads and resources. The performance of BULLET has been

evaluated with respect to execution time, cost, energy and other QoS parameters

like availability, reliability, latency and resource utilization. Execution cost permits

the evaluation for selection of resources whereas duration of workload execution

evaluates by execution time. The workload execution using the BULLET performs

better as shown by all the experimental results. The overall cost for cloud

consumer’s workload execution is less. With the increase in budget, the more

2

4

6
8

10
12

0

50

100

150

200

250

15 30
45

60
75

90

M
ea

n 
V

al
ue

 (k
W

h)

Number of Workloads

Energy Consumption 
200-250

150-200

100-150

50-100

0-50

Fig. 33 Statistical analysis of energy consumption

396 J Netw Syst Manage (2018) 26:361–400

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



number of resources are provided to reduce the execution time. BULLET executes

the same number of cloud workloads at maximum availability and reliability. The

average value of energy consumption in BULLET is 7.61, 11.45 and 17.19% lesser

than PSO-HPC, PSO-SW and PSO-DVFS respectively. The minimum cost used in

BULLET is 171 C$ at 15 workloads and maximum is 416 C$ at 90 workloads. The

average value of execution cost in BULLET is 3.16, 4.72 and 9.16% lesser than

PSO-HPC, PSO-SW and PSO-DVFS respectively.

At 30 workloads, execution time in BULLET is 6.69% lesser than PSO-HPC,

7.12% lesser than PSO-SW and 7.59% lesser than PSO-DVFS. At 90 workloads,

execution time in BULLET is 8.72% lesser than PSO-HPC, 11.39% lesser than

PSO-SW and 14.79% lesser than PSO-DVFS. The maximum percentage of

availability is 88.7% at minimum number of cloud workloads. At 75 workloads,

percentage of availability in BULLET is 7.42% more than PSO-HPC, 9.91% more

than PSO-SW and 13.72% more than PSO-DVFS. The maximum percentage of

reliability is 19.2 at 15 cloud workloads. At 60 workloads, percentage of reliability

in BULLET is 4.91% more than PSO-HPC, 8.76% more than PSO-SW and 17.22%

more than PSO-DVFS. The maximum percentage of resource utilization is 88.4% at

90 cloud workloads and minimum percentage is 71.96 at 15 workloads in BULLET.

The minimum value of latency is 1.24 s at 15 cloud workloads and maximum is

9.13 at 90 cloud workloads in BULLET. At 15 workloads, latency in BULLET is

2.23% lesser than PSO-HPC, 1.91% lesser than PSO-SW and 5.66% lesser than

PSO-DVFS but at 90 workloads, latency in BULLET is 6.11% lesser than PSO-

HPC, 14.92% lesser than PSO-SW and 17.59% lesser than PSO-DVFS. Considering

all these QoS parameters (execution time, cost, energy, availability, reliability,

latency and resource utilization) and experimental result outcomes, it is shown that

BULLET delivers a superior solution for heterogeneous cloud workloads and

approximate optimum solution for challenges of resource scheduling.
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5 Conclusions and Future Scope

In this paper, we have proposed PSO based resource scheduling technique called

BULLET for scheduling of workloads in cloud environment so as to minimize the

execution cost, time and energy. Experimental results demonstrate that BULLET is

effective in decreasing the execution time, cost and energy consumption of cloud

workloads along with other QoS parameters like availability, reliability, latency and

resource utilization. Proposed scheduling technique provides effective outcomes as

compared to existing PSO based scheduling algorithms at different levels of cost,

time and energy as shown in test cases. Thus, resources can be scheduled easily and

workloads can be executed effectively through proposed scheduling algorithm and

this will further reduce queuing time which leads to effective resource execution.

Proposed scheduling technique maps and executes the workloads based on workload

details given by user and resource details given by providers. In future, we will

further develop an autonomic resource management technique that efficiently

schedules the provisioned cloud resources and maintains the SLA based on user’s

QoS requirements to reduce the above mentioned dependency. IaaS providers can

use these results to quickly assess possible reductions in execution time and

execution cost, hence having the potential to save energy. This framework can also

be extended by identifying relationship between workload (patterns) and the

resource demands (demands for compute, storage, and network resources) in the

cloud.
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