
Analele Universităţii din Timişoara
Vol. XXXXIX, Fasc. 2, 2001

Seria Matematică–Informatică

JADE BASED MULTI-AGENT E-COMMERCE
ENVIRONMENT: INITIAL IMPLEMENTATION

Presented at 6th Int. Symposium SYNASC04, Timişoara,

Romania

Maria Ganzha ∗, Marcin Paprzycki ∗∗, Amalia Pirvănescu ∗∗∗,

Costin Bădică ∗∗∗∗, Ajith Abraham ∗∗∗∗∗

Abstract. Recent advances in software engineering, business process man-

agement and computational intelligence resulted in methods and techniques for

developing advanced e-commerce applications as well as supporting automating

e-commerce business processes. Despite this fact, up to now, the most success-

ful e-commerce systems are still based on humans to make the most important

decisions in various activities within an e-business transaction. In this context,

development of automatic negotiations is one of the most important research

issues. While, depending on the type of the transaction, different negotiation

procedures could be utilized, only few proposed frameworks are generic and flex-

ible enough to handle multiple scenarios. On the other hand, agent technology

is often claimed to be the best approach for automating e-commerce business

processes (including price negotiations). However, it is difficult to find success-

ful large-scale agent-based e-commerce applications to confirm this claim. This

paper presents negotiating agents that change their negotiation protocol and

strategy through dynamic loading of negotiation modules. These, as well as other

agents of different types and playing different roles have been implemented to in-

*Gizycko Private Higher Educational Institute, Department of Informatics,
ul. Daszynskiego 9, 11-500 Gizycko, Poland ganzha@pwsz.net

**Oklahoma State University, Computer Science Department Tulsa, OK, 74106,
USA and SWPS, Computer Science ul. Chodakowska 19/31, 03-815 Warszawa, Poland
marcin@cs.okstate.edu

*** SoftExpert SRL, Str.Vasile Conta, bl.U25, Craiova, Romania, amaliap@soft-
expert.com

**** University of Craiova, Software Engineering Department, Bvd.Decebal 107,
Craiova, RO-200440, Romania, badica costin@software.ucv.ro

*****School of Computer Science and Engineering, Chung Ang University, Seoul,
Korea, ajith.abraham@ieee.org



2 M.Ganzha et al.

teract within an abstract e-commerce environment. Description of this complete

e-commerce system is the goal of this paper.

Key words: multi-agent systems, e-commerce, automated negotiations

AMS Subject Classification: 68T99

1. Introduction. Already long time ago, the six main stages of con-

sumer buying behavior have been conceptualized: need identification, prod-

uct brokering, merchant brokering, negotiation, payment and delivery,

service and evaluation (Howard, 1969). These stages have not changed

when commerce moved to the Internet and became e-commerce. To be

able to support consumers, e-commerce research involves all aspects of

complex processes, spanning areas that cover business modeling, informa-

tion technology and social and legal aspects (Laudon, 2004). Currently,

e-commerce systems operate following the principle ”to select and to ac-

cept choices”. Thus users can browse through catalogues of needed goods

(tickets, films, knifes CD’s and so on) and utilize them to make purchas-

ing decisions. There exist systems, which support users during the prod-

uct or/and merchant brokering stages of the buying process (for instance

www.shopping.com). At the same time, the most interesting part of prod-

uct buying: automated negotiations, is not properly supported within B2C

environments (however, limited use of automated negotiations within B2B

is known to exist for some time now, and apparently was partially re-

sponsible for some of the more spectacular crashes on the New York stock

market in the late 1990th).

It is exactly in the context of agent-based automated price negotia-

tions, where a lot of research activity can be observed. Here, negotiation is

a process by which group of agents communicate with another to try and

come to a mutually acceptable agreement on some matter. While there ex-

ist many definitions of agents, for the purpose of this paper we will define

them as: encapsulated computer programs, situated in an environment,

and capable of flexible, autonomous actions focused on meeting their de-

sign objectives. For such agents, e-commerce is considered to be one of the

paradigmatic application areas. As described in the recent survey (Kowal-

czyk, 2003), multi-agent technology (involving intelligent mobile agents)

should have an important economical impact, by bringing efficiency to

businesses (and thus improving their profitability), as well as benefiting



JADE-BASED MULTI-AGENT E-COMMERCE ENVIRONMENT 3

individual users (e.g. by assuring ”price-optimality” of purchases). It is

exactly in the latter context where, multi-agent systems are expected to

assure price fairness and reduce the negotiation time.

While a large amount of work has been devoted to study agent-

negotiations, the current state of the art and practice is still rather unsat-

isfactory. Our research indicates that most currently existing automated

trading systems are not robust enough to become the foundation of the

next generation of e-commerce. Claim that there is a lot more work to

be done to develop real-life agent-based support for e-commerce is further

supported by the fact that it is almost impossible to point out to an ex-

isting large-scale implementation of an e-commerce agent system. While a

number of possible reasons for this situation have been suggested (see, for

instance, (Paprzycki, 2003)), one of them has been recently dispelled. It

was shown that modern agent environments (e.g. JADE) can easily scale

to 1500 agents and 300000 messages (Chmiel, 2004b). Since these results

have been obtained on a set of 8 antiquated Sun workstations, it is easy to

extrapolate the true scalability of JADE on modern computers and thus

it is possible to build and experiment with large-scale agent systems. Sec-

ondly, recently new methods and techniques of software engineering, busi-

ness process management and computational intelligence in support of the

development of advanced e-commerce applications have been proposed. For

example, we now have generic software frameworks for automated nego-

tiation (Bartolini, 2003), Semantic Web support (ontologies and semantic

Web services), at least in theory, for the full B2B e-commerce life cycle,

and finally, multi-agent solutions for business process management.

Therefore, we have set up a goal of developing, implementing and ex-

periment with a large-scale agent-based e-commerce system. Since this is

a long-term undertaking, at this stage our focus is on creating a system

with a multitude of agents that play variety of roles and interact with

each-other (system skeleton). Currently, we follow and combine our ear-

lier work in two areas. This paper is a follow up to (Parakh, 2003)where

we proposed a system in which agents can operate according to different

business models including auctions, reverse auctions, trading, e-sales etc.

This was to be made possible by constructing agents out of independently

plugable, loaded remotely on-demand modules (Paprzycki, 2004). Second,

we have implemented a simplistic skeleton for an e-commerce simulation

(Chmiel, 2004a) and proceeded to create a unified e-commerce environment

witch supports automatic negotiations in the case of one-to-many negotia-

tion process and experimented with the system running on two networked



4 M.Ganzha et al.

computers. This paper is a summary of our work starting from (Parakh,

2003) and ending with (Paprzycki, 2004). In the paper we, first, discuss the

most important issues involved in negotiations. In Section 3 we introduce

the top level description of our system and agents that populate it. We fol-

low (in Section 4) with a summary of implementation-specific information

(including UML diagrams conceptualizing most important agents) as well

as an example illustrating system’s work. We conclude with the research

agenda of our team.

2. Negotiations. Let us start from conceptualizing negotiations both

in theory and in the context of development of negotiating agents. Negoti-

ation is a method for coordination and conflict resolution. Conflict can be

in the form of resolving goal disparities in planning, resolving constraints

in resource allocation, and resolving task inconsistencies in determining or-

ganizational structure. As indicated above, in the context of the Internet

it will be autonomous agents that will be involved in negotiations. Over-

all, research on agent-mediated negotiation can be divided into approaches

based on game theory or artificial intelligence.

Game-theoretic approach is directed towards developing optimization

algorithms, AuctionBot etc. This approach takes into account both coop-

erative and non-cooperative agents. In the case of cooperative agents, the

problem space can be divided efficiently between all agents. In some cases,

agents form a team, each having its own local goals and a team goal. When

a conflict arises, the team members can negotiate about the matter, and

give evidence supporting their stance. However, the team members are

assumed to have total knowledge about the system. In non-cooperative

approach, theories like Nash equilibrium are applied to the bargaining

problem to find the optimum solution for agents. Their main drawback

is that, due to their roots being highly theoretical, they provide us with

highly abstract models that assume unrealistic properties of the game: e.g.

agents are assumed to have the entire common knowledge and unbounded

rationality; in addition, they are assumed to have unlimited computation

power and indefinite negotiation time. This makes such approaches impos-

sible to implement. Nevertheless, the extensive research carried out in this

field helped develop other theories. An example of game-theoretic approach

is the work on modeling and implementing techniques for agents partic-

ipating in auctions e.g. Dutch auction, English auction, Vickery auction,

etc.



JADE-BASED MULTI-AGENT E-COMMERCE ENVIRONMENT 5

Artificial Intelligence based approaches utilizes trading heuristics for

different market mechanisms. AI techniques focus on the negotiation pro-

cess rather than the outcome of the negotiation. Mostly learning ap-

proaches like decision trees, Q-learning and evolutionary algorithms have

been used to improve bargaining strategies. The agents used are adapt-

able, realistic and sociable. AI theories are based on realistic assumptions

of an imperfect world with bounded rationality and limited knowledge of

the world. Since agents do not know a’priori what type of agents they

are interacting with, this creates conflicts between agents. Simulations of

agents learning different bargaining strategies, through genetic algorithms,

have been carried out and their results have been quite promising.

When considering the practical aspects of designing multi-agent ne-

gotiations, the negotiation protocol, negotiation objects and the reasoning

models need to be taken into account. Let us consider each of them sepa-

rately:

Negotiation protocol consists of a set of rules that govern the interaction

among agents. Some examples of the rules are permissible types of

participants: negotiators, third parties; negotiation states: accepting

bids, negotiation closed; valid actions of the participant in particular

states. Typical negotiation protocols are

1. FIPA English Auction Interaction Protocol: the auctioneer seeks

to find the market price of a good by initially proposing a price below

that of the expected market value and then gradually raising it. Each

time the price is announced, the auctioneer waits to see if any buyers

will signal their willingness to pay the proposed price. As soon as one

buyer indicates that it will accept the price, the auctioneer issues a

new call for bids with a higher price. The auction continues until

no buyers are prepared to pay the proposed price, when the auction

ends. Commodity is sold only if the last accepted price exceeds the

auctioneer’s (privately known) reservation price.

2. FIPA Dutch Auction Interaction Protocol: the auctioneer at-

tempts to find the market price for a good by starting bidding at

a price higher than the expected market value, then progressively

reducing the price until one of the buyers accepts the price. The rate

of reduction of the price is up to the auctioneer and usually a reserve

minimal price is involved.



6 M.Ganzha et al.

Negotiation objects are ranges of issues over which agreement must be

reached. These depend on the environment and can be different for

different environments.

Reasoning model is the apparatus that participants employ to act in line

with the negotiation protocol in order to achieve their negotiation

objectives. Reasoning models are the thinking machines behind the

process of carrying out the negotiation. Reasoning model is a mecha-

nism by which the next counter-offer is calculated during negotiation

so that the price fits into the goal of buying some good within the

specified range. Some of the strategies developed so far are argumen-

tation, persuasion and heuristics-based. It can be safely assumed that

the kind of reasoning model chosen depends on both the protocol and

the negotiation object. Moreover, the complexity of former depends

on latter.

This way of conceptualizing negotiations results in agents that have

to consist of the following three main modules:

Communication module — responsible for communication between the

agents in a common, understandable way. Since FIPA, as a main

agent standardization body, is supporting a number of communica-

tion technologies (e.g. the ACL communication language) (FIPA,

1999), we will assume that functions of this module are obvious

enough for it to be omitted from further considerations. This is es-

pecially so, since this module is a static one.

Protocol module — contains general rules of negotiation; when an agent

initiates negotiation, on the basis of negotiator table and/or meta-

negotiations it finds out which negotiation protocol can be used and

dynamically loads the correct module (from the user’s local machine

or any agent server, e.g. the nearest one).

Strategy module — is designed to apply the proper reasoning module so

that the negotiation ends in a success. The reasoning model contains

policies, which are a set of goals, actions and action rules (triggers).

In order to decide which reasoning model to use, the agent uses the

mapping table that records the earlier history of the transactions,

which the agents made with the seller. It also lists what was the

success rate for the transactions. If an entry is not found, then the

agent resorts to a default strategy. To keep the agent lightweight it



JADE-BASED MULTI-AGENT E-COMMERCE ENVIRONMENT 7

will carry only a part of the table, containing the ”sites” most often

negotiated with, while the remaining part of the table will be kept

on the user’s machine. In case the user’s machine is off-line the de-

fault strategy will be used, again (since this will involve only sites

that are visited rarely, such an occurrence should not be detrimental

to the overall behavior of our system). The strategy also depends

on which protocol module has been chosen. In fact, the strategy is

almost restricted by that decision. For example, a strategy used for

argumentation cannot be used if the protocol is an auction protocol.

It should be noted that it is possible define two levels of strategies:

coarse and granular. The granular strategies are tit-for-tat, conceder

etc, while the coarse strategies are heuristics, using knowledge base

etc. Their usage will depend on the negotiation context and the de-

tails of the selection strategy will be further studied. We expect that

a special (rule-based) strategy selection meta-module will be devel-

oped. This module can, be split between the agent, that will carry

the most important rules, and the user local machine that will con-

tain the complete module. In this way the agent will be able to get

involved in negotiations even if its contact with the user’s machine

will be impossible to establish.

The main problem in designing mobile e-commerce agents involved in

negotiations is the fact that we cannot assume that agent will know a’priori

which negotiation protocol will be used at a given site (we assume here,

that the same site, for the same product can use at different times different

negotiating protocols). This being the case, ”buyer agents” would have to

carry with them a large load of negotiation protocols and strategies and

this would impede their mobility. This is particularly the case when sophis-

ticated negotiation strategies are to be used (for all practical purposes we

have to assume that the more sophisticated strategy, the larger the strat-

egy module that implements it). Thus we are dealing with a clear case of

the ”no free lunch theorem” agents can be either mobile and lightweight

or ”intelligent.” To address this problem we followed an approach where

each agent consists of the skeleton and three separate modules: communi-

cation, strategy and protocol. The mobile part of an agent consists of the

skeleton and the communication module (though it can be assumed that,

for instance, multi-lingual communication modules can also be download-

able), while the protocol and strategy modules are downloaded after agent

arrives at the e-marketplace and establishes which protocol is to be used.



8 M.Ganzha et al.

Then, on the basis of the history of interaction with that site, the product

to be purchased, the protocol used etc., an appropriate strategy module

is also loaded. Observe, that the protocol module can be public - as its

content has to be the same for all agents participating, for instance, in an

English auction, and thus can be loaded form ”any server”. It is only the

strategy module that is proprietary and has to be downloaded from the

”home-base”. The proposed design of negotiating agents is illustrated in

Figure 1.

Fig. 1. Agents consisting of downloadable modules.

Since the aim of our work was to test-implement an agent system,

and not to deal with specific negotiation strategies, we have implemented

two extremely simple ones. The buyer/seller increments the price by 10 in,

what we named, the Heuristics Reasoning module and by 20 in, what we

named, the Argumentation Reasoning module (obviously, these names only

indicate negotiation strategies that could have been used here). Currently

we load these two modules randomly as a proof of concept.

3. System Description. In our work we aim at implementing a multi-

agent e-commerce environment to help carrying out experiments with real-

world e-commerce scenarios. Note that sometimes we use the word envi-

ronment rather than system to point out the exploratory nature of our

work; i.e. we are more interested in creating an artificial agent world in

which e-commerce agents perform variety of functions typically involved in

e-commerce, rather than developing a particular e-commerce system tar-



JADE-BASED MULTI-AGENT E-COMMERCE ENVIRONMENT 9

geted to solve a specific business problem that uses a limited number of

application-specific agents.

3.1. System Architecture. Our e-commerce model extends and builds

on the e-commerce structures presented in (Galant, 2000), (Chmiel, 2004a)

and (Paprzycki, 2004). Basically, our environment acts as a distributed

marketplace that hosts e-shops and allows e-clients to visit them and pur-

chase products. Clients have the option to negotiate with the shops, to

bid for products and to choose the shop from which to make a purchase.

Conversely, shops may be approached ”instantly” by multiple clients and

consequently, through auction-type mechanisms, have an option to choose

the buyer. At this stage the system is under development and has a num-

ber of limitations. (1) Only two auction protocols have been implemented.

(2) The two strategy modules are only to show that such modules can be

downloaded upon request. (3) We have only shops are allowed to advertise

their products (clients cannot advertise goods they are seeking). (4) While

various strategies could be employed to decide where to buy from (e.g. the

best price, the safest offer, the most trusted offer, etc.), we are using only

the best negotiated price. (5) We do not worry about system scalability

and thus work with single agents (e.g. the CIC agent) that can become

a bottleneck when the system size increases (Chmiel, 2004b). Obviously,

these are serious restriction and we plan to address them in the near future.

Shops and clients are created through a GUI interface that links users

(buyers and sellers) with their Personal Agents. However, these agents are

in many ways spurious for the operation of the system. More precisely, a

Personal Agent is considered to be a true representative of the user that

resides on her machine and represents her interests in all aspects of e-life.

Thus, in the context of our system its role is restricted to creation of Client

/ Shop agents that will be a part of the e-marketplace; and therefore the

GUI and Personal agents are omitted from further considerations. The

top level conceptual architecture of the system illustrating proposed types

of agents and their interactions in a particular configuration is shown in

Figure 2. Let us now describe each agent appearing in that figure and their

respective functionalities.

A Client agent (CA) is created by the Personal agent to act within

the marketplace on behalf of a a user that attempts at buying something.

Similarly, a Shop agent represents user who plans to sell something within

the e-marketplace. After being created both Shop and Client agents register

with the CIC agent to be able to operate within the marketplace. Returning



10 M.Ganzha et al.

Fig. 2. The conceptual architecture of our e-commerce environment

(two-client; two-store version).

agents will receive their existing IDs. In this way we provide support for

the future goal of agent behavior adaptability. Here, agents in the system

are able to recognize status of their counterparts and differentiate their

behavior depending if this is a ”returning” or a ”new” agent that they

interact with.

There is only one Client Information Center (CIC) agent in the sys-

tem. It is responsible for storing, managing and providing information

about all ”participants” existing in the system. To be able to participate

in the marketplace all Shop and Client agents must register with the CIC

agent, which stores information in the Client Information Database (CI-

CDB). The CICDB combines the function of client registry, by storing

information about and unique IDs for all users and of yellow pages, by

storing information about of all shops known in the marketplace. Thus

Client agents (new and returning) communicate with the CIC agent to

find out which stores are available in the system at any given time. In this

way we are (i) following the general philosophy of agent system develop-

ment, where each function is embodied in an agent and (ii) utilizing the

publisher-subscriber mechanism based on distributed object oriented sys-

tems. Furthermore, this approach provides us with a simple mechanism of

correctly handling the concurrent accesses to a shared repository without



JADE-BASED MULTI-AGENT E-COMMERCE ENVIRONMENT 11

having to deal with typical problems of mutual exclusion etc. Actually, all

these problems are automatically handled by JADE’s agent communica-

tion service.

A Client agent is created for each customer that is using the system.

Each Client agent creates an appropriate number of ”slave” negotiation

agents with the ”buyer role” (Buyer agents hereafter). One Buyer agent

is created for each store, within the marketplace, selling sought goods.

Operation of the Client agent is depicted in Figure 3; further details can

be also found in the next section.

On the supply side, a single Shop agent is created for each merchant

in the system and it is responsible for creating a slave negotiation agent

with the ”seller role” (Seller agent hereafter) for each product sold by

the merchant within her e-store. Operation of the Shop agent is depicted

in Figure 4, while the Seller agent is conceptualized in Figure 5; further

details can be also found in the next section.

Finally, Database agents are responsible for performing all database

operations (updates and queries). For each database in the system we

create one database agent. In this way we decouple the actual database

management activities from the rest of the system (i.e. the database man-

agement system can be modified in any way without affecting the agent

side of the system and vice-versa). Currently, there are two databases in

the system: a single CICDB database (operated by the CICDB agent) con-

taining the information about clients, shops and product catalogues, and a

single Shop Database (ShopDB) operated by the ShopDB agent storing in-

formation about sales and available supplies for each merchant registered

within the system. Since operation the database agents is obvious, and

in a way auxiliary to the system, we omit them form further discussions,

including UML diagrams of other agents.

The central part of the system operation is comprised by price nego-

tiations. Buyer agents negotiate price with Seller agents. For this purpose

Buyer agents migrate to the e-stores known by the CIC agent to carry

sought after commodity. In case of multiple Buyer agents attempting at

purchasing the same item, they may compete in an auction. Results of

price negotiations are send by the Shop agent to the Client agent that

decides where to attempt at making a purchase. Note that the system is

fully asynchronous and thus an attempt at making a purchase does not

have to result in a success as by the time the offer is made other Buyer

agents may have already purchased the last available item. In this way we

proceed with a n e-commerce model similar to the airline ticket reservation



12 M.Ganzha et al.

where until an actual purchase is made item is reserved, but may not be

available at a later time.

Let us now illustrate operation of the system through a simplified

usage scenario.

3.2. Usage scenario. A session with the system starts with the mer-

chants and customers creating Shop and Client agents via the GUI pro-

vided by their Personal agents. A Client agent obtains name of the product

of interest (possibly multiple products of interest) and a reserve price (see

Figure 3). A Shop agent obtains a list of pairs (product, reserve price) and

Fig. 3. UML statechart diagram of the Client agent.

the negotiation protocol that is to be used for interactions with incoming

Buyer agents (see Figure 4).

The reserve price of a Client agent is the maximum price it agrees to

pay for the product. The reserve price of the Shop agent is the minimum

price at which it is to agree to sell a specified product. Each Shop agent

creates Seller agents, one Seller agent for each product sold (see Figure

5). Seller agents await incoming Buyer agents interested in buying their

products and upon their arrival engage in negotiations with them (see

Figure 5). Let us now describe what happens in the marketplace after

a customer has made a purchase request, until a request is completed

(Figures 3, 4 and 5 further illustrate the process).

1. As specified above, a Client agent registers with the CIC agent. It

obtains a new ID if it is a new Client or recovers its original ID if it is a



JADE-BASED MULTI-AGENT E-COMMERCE ENVIRONMENT 13

Fig. 4. UML statechart diagram of the Shop agent.

Fig. 5. UML statechart diagram of the Seller agent.

returning Client. The information that an agent with a given ID is active

in the marketplace is stored in the CICDB database (this step involves

interactions between the CIC agent and the CICDB agent).

2. The Client agent queries the CIC agent to obtain the list of Shop

agents selling the product it is expected to purchase. For each Shop agent

on this list it creates a Buyer agent to negotiate conditions of purchase.

3. Buyer agents migrate to Shop agent sites and query Shop agents

about the negotiation protocol used in a given e-store and which Seller

agent they should negotiate with. Then, Buyer agents dynamically load



14 M.Ganzha et al.

appropriate negotiation protocols (and, in the future, strategy modules

(Parakh, 2003) from Client agents and subscribe to the designated Seller

agent, waiting for the negotiation process to start.

4. The Seller agent checks periodically (currently in 1 minute inter-

vals) for the set of Buyer agents that subscribed to bid for its product. If

this set is nonempty, it starts an auction. At the end of an auction a Seller

agent informs the Shop agent about the winner. Shop agents are recording

the auctions winners and inform the corresponding Client agents that a

purchase is possible. The decision to buy and where to buy from is made

by the Client agent, depending on the winning offers made by the Shop

agents.

5. The Client agent obtains results of auctions from the Shop agents,

finds the best negotiated price and makes an attempt at purchasing the

product by informing the corresponding Shop agent about the decision to

buy. When the confirmation is received, it informs the customer about

the result of its request: success of failure of purchase, the shop where the

purchase was made from and the negotiated price.

4. Implementation and Experiment.

4.1. System Implementation. The current implementation of the pro-

posed environment has been made within the JADE 3.3 agent platform

(JADE, 2003). The main reason for this selection was the fact that JADE

is one of the best modern agent environments. JADE is open-source, it

is FIPA compliant and runs on a variety of operating systems including

Windows and Linux. Furthermore, in (Chmiel, 2004b) we have observed

its very good scalability.

JADE architecture, consisting of a platform within which agents ”live”

and containers, where agents ”reside” matches well with our requirements.

Negotiations between Seller and Buyer agents take place inside of JADE

containers. There is one Main container that hosts the CIC agent. Users

(customers and merchants) can create as many containers they need to

hold their Client and Shop agents (e.g. one container for each e-store).

Buyer agents created by Client agents use JADE mobile agent technology

to migrate to the Shop agent containers to engage in negotiations.

Figure 6 presents a mapping of our conceptual architecture from Fig-

ure 2 onto JADE. In particular, this diagram shows two machines running

Personal, Shop, Client, Buyer and Seller agents, highlighting also JADE

containers involved (Main container in the upper half of the figure, and



JADE-BASED MULTI-AGENT E-COMMERCE ENVIRONMENT 15

Container-1 container in the lower half, separated by the horizontal dot-

ted line). Here, continuous lines denote agent creation. Personal agent P1

represents user u1 (shopper) and creates two Client agents: C11 and C12

to purchase items p1 and p2 respectively. Single-arrow dashed lines denote

agent migration. Buyer agent B111 migrates from the Main container to

the Container-1 container. Double-arrow continuous lines denote negoti-

ations. Seller agent S11 negotiates with Buyer agents B111 and B211 for

product p1. The sample scenario from Figure 6 is discussed in more detail

in section 3.2.

Fig. 6. Mapping the conceptual architecture of the system to JADE.

The current implementation is based on several Java classes organized

into the following categories:

Agent classes. They are used for describing the agent types. In this cat-

egory we have utilized: class ClientAgent that implements Client agents,

class ShopAgent that implements Shop agents, class CIC that implements

CIC agents, class NegoAgent that implements negotiating Buyer and Seller

agents, classes CICDatabaseAgent and ShopDatabaseAgent that implement

em Client Information Database and Shop Database agents and class Per-

sonalAgent that implements Personal agents. An agent is implemented in

JADE by extending the provided Agent base class and overriding the de-

fault implementation of the methods that are automatically invoked by

the platform during the agent lifecycle, including setup() and takedown().

In our implementation all agent classes extend the Agent base class ex-



16 M.Ganzha et al.

cept the PersonalAgent class that extends the GuiAgent class (provided

by JADE).

Agent activity classes, also called behaviors. They are used for de-

scribing the activities performed by agents in the system. A behavior is an

abstraction that represents an atomic activity performed by an agent. In

our implementation we have used local classes for defining behaviors that

describe the agent responses to FIPA messages, like INFORM and SUB-

SCRIBE. There are also two global classes for defining auction initiators

and auction participants: class AuctionInitiator and class AuctionPartici-

pant. Note that in the current implementation our agents are negotiating

only using FIPA defined English and Dutch auction schemas, but the ap-

proach can be easily extended to other automated negotiation models. A

behavior is implemented in JADE by extending the provided Behaviour

abstract base class. The class Behaviour is the root of a class hierarchy

abstracting various agent behavior types. We have found useful to use the

class CyclicBehaviour as the base class for the class AuctionParticipant

and the class FSMBehaviour as the base class for the class AuctionInitia-

tor. As concerning the definition of the responses to FIPA messages, we

have extended the class CyclicBehaviour.

Reasoning classes. They are used for the implementation of the vari-

ous reasoning models employed by the negotiation agents; see (Paprzycki,

2004) for more details on the model of negotiation agents. Our implemen-

tation supports agents that dynamically load their negotiation protocols

and reasoning modules. The implementation combines the Factory design

pattern (Cooper, 2000) and dynamical loading of Java classes (Paprzycki,

2004).

Ontology classes. They are necessary for implementing the agent com-

munication semantics using concepts and relations. The current implemen-

tation uses an extremely simple ontology that defines a single concept for

describing Client and Shop preferences including prices, product names

and negotiation protocols.

Other classes. Here including there is class PersonalAgentGUI for the

implementation of the graphical user interface of Personal agents.

In our system, agent communication is implemented using FIPA

ACL messages (FIPA, 1999). We have used the following messages: SUB-

SCRIBE, REQUEST, INFORM, FAILURE, CFP, PROPOSE, ACCEPT-

PROPOSAL, REJECT-PROPOSAL, REFUSE.

SUBSCRIBE messages are used by the Shop and Client agents to

register with the CIC agent and for the Buyer agents to register (to par-



JADE-BASED MULTI-AGENT E-COMMERCE ENVIRONMENT 17

ticipate in auctions) with the Seller agent. REQUEST messages are used

by Client agents to query the CIC agent about what shops are selling a

specific product and for Client agents to ask the Shop agent for a final

confirmation of a transaction. INFORM messages are used as responses to

SUBSCRIBE or REQUEST messages. For example, after subscribing to

the CIC agent, a Client agent will get an INFORM message that contains

its ID, or after requesting the names of the shops that sell a specific prod-

uct, a Client agent will receive a list of the Shop agent IDs in an INFORM

message. Buyer agents are using FAILURE messages to inform the mas-

ter Client agents about the unsuccessful result of an auction. Finally, CFP,

PROPOSE, ACCEPT-PROPOSAL, REJECT-PROPOSAL and REFUSE

messages are being used by negotiating agents.

4.2. Running the System. For the experiment, we set up JADE on 4

computers. On the first computer, the Main container is initialized. On the

remaining computers, containers Container-1,2,3 that are linked with the

Main container on the first computer were started. Both the CIC and the

CICDB agents were created by default within the Main container, while

the Shop and the ShopDB agents were instantiated in Container-1,2,3

containers.

In this experiment we have used a simple scenario with 4 merchants

– Shop0, Shop1, Shop2, Shop3 and 4 customers — Client0, Client1,

Client2, Client3. Customer Client0 is seeking products p1 and p4, cus-

tomer Client1 is seeking products p1 and p3, customer Client2 is seeking

products p2 and p4 while customer Client3 is seeking products p2 and p3.

In order to enable price competition, we have set the experiment in such a

way that some customers are seeking a common product. Merchants and

customers used Personal agents running in all containers to create four

Shop and four Client agents (Figure 7.

The process of starting Shop agents involved their registration with

the CIC agent. Hereafter, for each product offered, a Seller agent was

created. So there are two Seller agents in every container. Similarly, start-

ing Client agents involved their registration with the CIC agent, followed

by the ”search” of Shop agents that sell sought products and creation of a

Buyer agent for every Shop agent found. Therefore, finally, 16 Buyer agents

were created (4 Client agents send 4 Buyer agents each to 4 e-stores).

At this stage of the experiment, Buyer agents move to all appropriate

containers and register with appropriate Shop agents. As a result of mes-

sage exchanges (Figure 8, bottom panel) negotiation protocol is identified



18 M.Ganzha et al.

and negotiation modules loaded by Buyer agents. Next, Buyer agents sub-

scribe with Seller agents that sell sought products. Seller agents react to

a timer that periodically triggers start of auctions with subscribed Buyer

agents (an English auction in this experiment). Thus we have 8 auctions

- 2 for selling each product p1, p2, p3 and p4. Note that because both cus-

tomers Client0 and Client1 are requesting product p1, Buyer agents B001,

B011, and respectively B101 and B111 are competing for buying p1 from

Seller agents within Shop0 and respectively Shop1.

Figure 8 presents message exchanges captured in the experiment with

the help of a JADE provided sniffer agent. This figure shows: i) Shop and

Client agents subscribing to the CIC agent; ii) Client agents asking the CIC

agent where to find out a specific product; iii) Buyer agents subscribing to

Seller agents for negotiation; iv) the start of a negotiation when a Seller

agent issues a call-for-proposal request to a Buyer agent.

Fig. 7. Screen captures showing our system in action.

Figure 9 presents finalization stage of negotiations — notification of

User about result of negotiations.

5. Conclusions. In this paper we have presented basic features of an

e-commerce modeling agent system that we are currently developing. At



JADE-BASED MULTI-AGENT E-COMMERCE ENVIRONMENT 19

Fig. 8. Screen captures showing our system in action.

Fig. 9. Screen captures showing finish of action.



20 M.Ganzha et al.

this stage its capabilities are limited, but we have already considered a

number of future research directions that we plan to pursue.

(1) Currently price is the only factor determining purchase. Other fac-

tors, such as the speed of delivery, trust, history of involvement with a

given merchant should be also taken into account. Overall, we plan to

combine the framework for multi-section contract formation discussed in

(Karp, 2003) with the software framework for automated negotiation pre-

sented in (Bartolini, 2003) and results on negotiation framework targeted

to multiple buyers and sellers reported in (Srivastava, 2003).

(2) Currently only shops can advertise available commodities. We plan

to extend this to the scenario in which also clients will be able to advertise

their ”needs”.

(3) We will complete implementation of negotiation protocols. Cur-

rently we have implemented Dutch and English auctions. We will add the

remaining, FIPA defined auction protocols as well as simpler strategies

such as: fixed pricing, fixed pricing with a discount for volume purchases,

special prices for returning customers etc.

(4) Currently we have been running our experiments on two comput-

ers, where all seller data is located in a single database. In the near future

we will experiment with a larger number of computers and adjust them

so that each store has a separate database. More generally, we plan to

experiment with a large number of computers, clients, shops, commodities

and negotiation protocols. The aim of these experiments is to establish

scalability of the systems as well as locate its performance bottlenecks.

(5) Our system works on the basis of an extremely simplistic ontology

that has to be refined. In the process we plan to add, among others, features

representing: delivery options (and prices), trust / reliability and other

concepts useful in carrying out e-commerce processes.

(6) Currently, the negotiation strategy module is only a placeholder

(agents increase or reduce their offers - depending on the auction - by a

fixed amount). A set of somewhat more realistic options will be introduced

shortly.

We will be reporting the progress of our research in the subsequent

publications.

REFERENCES

Bartolini, C. et al (2002). Architecting for Reuse: A Software Framework for Automated
Negotiation. Proceedings of the 3rd Int. Workshop on Agent-Oriented Software En-
gineering, Bologna, Italy, LNCS 2585, Springer Verlag, pp. 88-100.



JADE-BASED MULTI-AGENT E-COMMERCE ENVIRONMENT 21

Chmiel, K. et al (2004). Agent Technology in Modelling E-Commerce Processes; Sam-
ple Implementation. In: C. Danilowicz (ed.), Multimedia and Network Information
Systems, Volume 2, Wroclaw University of Technology Press, pp. 13-22.

Chmiel, K. et al (2004). Testing the Efficiency of JADE Agent Platform, Proceedings
of the 3rd International Symposium on Parallel and Distributed Computing, Cork,
Ireland, IEEE Computer Society Press, Los Alamitos, CA, pp. 49-57

Cooper, J.W. (2000). Java Design Patterns. A Tutorial. Addison-Wesley, 329 pp.
FIPA (1999). The foundation for intelligent physical agents. See http://www.fipa.org.
Galant, V. et al (2002). Infrastructure for E-Commerce. Proceedings of the 10th Con-

ference on Knowledge Extraction from Databases. Wroclaw University of Economics
Press, pp. 32-47.

Howard, J., J.Sheth (1969). The Theory of Buyer Behavior, Wiley.
JADE. Java Agent Development Framework. See http://jade.cselt.it.
Karp, H. A., (2003). Rules of Engagement for Automated Negotiation. Technical Report

HPL-2003-152. Intelligent Enterprise Technologies Laboratory, HP Laboratories Palo
Alto, USA.

Kowalczyk, R. et al (2002). Integrating Mobile and Intelligent Agents in Advanced
E-commerce: A Survey. Agent Technologies, Infrastructures, Tools, and Applica-
tions for E-Services, Proceedings NODe’2002 Agent-Related Workshops, Erfurt,
Germany, LNAI 2592, Springer Verlag, pp. 295-313.

Laudon, K.C., C.G. Traver (2004). E-Commerce. Business, Technology, Society (2nd
ed.). Pearson Addison-Wesley, 949 pp.

Paprzycki, M., A ,Abraham (2003). Agent Systems Today; Methodological Consid-
erations, in: Proceedings of 2003 International Conference on Management of e-
Commerce and e-Government, Jangxi Science and Technology Press, Nanchang,
China, pp. 416-421.

Paprzycki, M., A. Abraham, A.P̂ırvănescu, C.Bădică (2004). Implementing Agents
Capable of Dynamic Negotiations. In: D.Petcu et. al. (eds.) Proceedings of
SYNASC04: Symbolic and Numeric Algorithms for Scientific Computing. Mirton
Press, Timişoara, pp. 369-380.

Parakh, G. (2003). Agents Capable of Dynamic Negotiations. In: M. Paprzycki
(ed.), Electronic Commerce; Research and Development, ACTEN Press, Wejherowo,
Poland, pp. 113-120

Srivastava, V., P.K.J. Mohapattra (2003). PLAMUN: a platform for multi-user negoti-
ation. Electronic Commerce Research and Applications, 2(3), 339-349.

University of the West,
Faculty of Mathematics
Department of Computer Science
B-dul V. Pârvan, 4
Timişoara, 1900, ROMANIA
emailaddress@info.uvt.ro

Received May 2005


