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Abstract:  Intelligent energy management has become one of the major research 
fields in electrical engineering. It constitutes an important tool for efficient 
planning and operation of power systems and its significance has been 
intensifying particularly, because of the recent movement towards open energy 
markets and the need to assure high standards on reliability. Hybrid neuro-fuzzy 
paradigms have recently gained a lot of interest in research and application. In this 
chapter, we discuss two neuro-fuzzy paradigms for intelligent energy 
management. In the first approach, a neural network learning algorithm is used to 
fine tune the parameters of a Mamdani and Takagi Sugeno Fuzzy Inference 
System (FIS). Mamdani FIS is used to predict the energy demand and the Takagi- 
Sugeno FIS is used to predict the reactive power flow. In the second approach, 
fuzzy if-then rules were embedded into an Artificial Neural Network (ANN) 
learning algorithm (fuzzy-neural network) to achieve improved performance for 
short-term load forecast. The performance of the different neuro-fuzzy paradigms 
were tested using real world data and compared with a direct neural network and 
FIS approach.  The different performance results obtained clearly demonstrates 
the importance of the proposed techniques for intelligent energy management. 

Keywords: neuro-fuzzy, computational intelligence, hybrid systems, neural 
network, fuzzy system 

1. Introduction 

Accurate load forecasting is of great importance for power system operation. It is 
the basis of economic dispatch, hydrothermal coordination, unit commitment, and 
system security analysis among other functions [23]. Short-term load forecasts 
have become increasingly important since the rise of the competitive energy 
markets [24][25][27][30]. Many countries have recently privatized and 



deregulated their power systems, and electricity has been turned into a commodity 
to be sold and bought at market prices. Since the load forecasts play a crucial role 
in the composition of these prices, they have become vital for the supply industry.  

Load forecasting is however a difficult task. First, because the load series is 
complex and exhibits several levels of seasonality: the load at a given hour is 
dependent not only on the load at the previous hour, but also on the load at the 
same hour on the previous day, and on the load at the same hour on the day with 
the same denomination in the previous week. Secondly, because there are many 
important exogenous variables that must be considered, specially weather-related 
variables.  

We consider two different ways of integrating neuro-fuzzy paradigms [4]. The 
first approach is to apply a learning algorithm to a FIS [9], which is represented in 
a special ANN like architecture [26]. However the conventional ANN learning 
algorithms (gradient descent) cannot be applied directly to such a system as the 
functions used in the inference process are usually non differentiable. This 
problem can be tackled by using differentiable functions in the inference system or 
by not using the standard neural learning algorithm. The performance of the 
algorithms are validated by practical energy data [8][3][6].  

In the second approach, the input parameters consisting of load patterns and 
weather parameters are fuzzified and used to train a neural network. We applied 
the backpropagation algorithm to train neural network to find a preliminary 
forecast load. In addition, the rule base of the fuzzy inference machine contains 
linguistic importance attached to them in terms of membership functions with 
knowledge in the form of fuzzy “if-then” rules. It makes the load correction 
inference from historical information and past forecast load errors to calculate the 
forecast load error. Adding the current forecast load error to the preliminary 
forecast load, we obtained the final forecast load. The effectiveness of the 
proposed approach to the short-term load-forecasting problem is demonstrated by 
the practical data collected from the Czech Electric Power Company (CEZ), 
Czech Republic [19][20][22][21]. 

This paper is organized as follows. In sections 2 and 3, we present the different 
neuro-fuzzy paradigms followed by the different experimentation results in 
Section 4. Some conclusions are also provided towards the end.   

 

2. Integrating Neural Networks and Fuzzy Inference System  

A conventional fuzzy controller makes use of a model of the expert who is in a 
position to specify the most important properties of the process. Expert knowledge 
is often the main source to design the fuzzy inference systems. Figure 1 shows the 
architecture of the fuzzy inference system controlling a process. According to the 



performance measure of the problem environment, the MFs, rule bases and the 
inference mechanism are to be adapted [7]. 
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Figure 1. Architecture of adaptive fuzzy inference systems 

Several research works are going on exploring the adaptation of fuzzy inference 
systems [13][11][15][36][29][2][1][26]. These include the adaptation of 
membership functions, rule bases, aggregation operator’s etc. These techniques 
include but are not limited to: 

• Self-organizing process controller by Procyk et al [34], which considered the 
issue of rule generation and adaptation.  

• Evolutionary algorithms to optimize the fuzzy parameters, rule base 
etc.[5][10][31]. 

• Gadient descent and its variants have been applied to fine-tune the parameters 
of the input and output membership functions [38]. 

• Pruning the quantity and adapting the shape of input/output membership 
functions [39]. 

• Fuzzy discretization and clustering techniques [40] 

In most cases the inference of the fuzzy rules is done using the 'min' and 'max' 
operators for fuzzy intersection and union. If the T-norm and T-conorm operators 
are parameterized then gradient descent technique could be used in a supervised 
learning environment to fine-tune the fuzzy operators. 

 

 



In an integrated model, neural network learning algorithms are used to determine 
the parameters of fuzzy inference systems. Integrated neuro-fuzzy systems share 
data structures and knowledge representations. A fuzzy inference system can 
utilize human expertise by storing its essential components in rule base and 
database, and perform fuzzy reasoning to infer the overall output value. The 
derivation of if-then rules and corresponding membership functions depends 
heavily on the a priori knowledge about the system under consideration. However 
there is no systematic way to transform experiences of knowledge of human 
experts to the knowledge base of a fuzzy inference system. There is also a need 
for adaptability or some learning algorithms to produce outputs within the 
required error rate. On the other hand, neural network learning mechanism does 
not rely on human expertise. Due to the homogenous structure of neural network, 
it is hard to extract structured knowledge from either the weights or the 
configuration of the network. The weights of the neural network represent the 
coefficients of the hyper-plane that partition the input space into two regions with 
different output values. If we can visualize this hyper-plane structure from the 
training data then the subsequent learning procedures in a neural network can be 
reduced. However, in reality, the a priori knowledge is usually obtained from 
human experts and it is most appropriate to express the knowledge as a set of 
fuzzy if-then rules and it is very difficult to encode into an neural network. 
Modeling integrated neuro-fuzzy systems implementing Mamdani and Takagi 
Sugeno FIS is presented in Sections 2.1.1 and 2.1.2. 

2.1 Adaptive Network Based Fuzzy Inference System (ANFIS) 

ANFIS [15] is perhaps the first integrated hybrid neuro-fuzzy model. ANFIS 
structure as shown in Figure 2 is capable of implementing the Takagi and Sugeno 
FIS [14]. The detailed functioning of each layer is as follows: 

Layer-1 (fuzzification layer): Every node in this layer has a node function  

)(1 xO
iAi µ= , for i =1, 2     (1) 

1
iO  is the membership grade of a fuzzy set A ( = A1, A2, or B1 or B2) and it 

specifies the degree to which the given input x (or y) satisfies the quantifier A. 
Usually the node function can be any parameterized function.. A gaussian 
membership function is specified by two parameters c (membership function 
center) and � (membership function width) . 
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Parameters in this layer are referred to premise parameters. 



Layer-2 (rule firing strength layer): Every node in this layer multiplies the 
incoming signals and sends the product out. Each node output represents the firing 
strength of a rule.  
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In general any T-norm operators that perform fuzzy AND can be used as the node 
function in this layer. 

Layer-3 Every i-th node in this layer calculates the ratio of the i-th rule’s firing 
strength to the sum of all rules firing strength.  
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Layer 4 (rule strength normalization): Every node in this layer calculates the 
ratio of the i-th rule’s firing strength to the sum of all rules firing strength 
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Layer-5 (rule consequent layer): Every node i in this layer is with a node function  

)( 21 iiiiii rxqxpwfw ++=    (6) 

where iw is the output of layer 4, and { }iii rqp ,, is the parameter set. A well-
established way is to determine the consequent parameters using the least means 
squares algorithm. 

Layer-6 (rule inference layer): The single node in this layer computes the overall 
output as the summation of all incoming signals: 
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Figure 2. Architecture of the ANFIS 

Takagi Sugeno neuro-fuzzy systems make use of a mixture of back propagation to 
learn the membership functions and least mean square estimation to determine the 
coefficients of the linear combinations in the rule’s conclusions [14]. A step in the 
learning procedure got two parts: In the first part the input patterns are propagated, 
and the optimal conclusion parameters are estimated by an iterative least mean 
square procedure, while the antecedent parameters (membership functions) are 
assumed to be fixed for the current cycle through the training set. In the second 
part the patterns are propagated again, and in this epoch, back propagation is used 
to modify the antecedent parameters, while the conclusion parameters remain 
fixed. This procedure is then iterated. Assuming a single output ANFIS 
represented by  

),( SIFoutput =      (8) 

where I is the set of input variables and S is the set of parameters, if there exist a 
function H such that the composite function H � F is linear in some of the 
elements of S, then these elements can be identified by the least squares method. 
More formally the parameter set S can be decomposed into two sets: 

21 SSS ⊕=  (where ⊕  represents direct sum),  (9) 

such that H � F is linear in the elements of 2S . Then upon applying H to (8), we 
have: 

),()( SIFHoutputH �=     (10) 



which is linear in the elements of 2S . Now the given values of elements of 1S , 
we can plug P training data into (10), and obtain a matrix equation: 

AX = B (X = unknown vector whose elements are parameters in 2S ) (11) 

If 2S =M, (M= number of linear parameters) then the dimensions of A, X and B 
are P ×  M, M ×  1 and P ×  1 respectively. Since P is always greater than M, there 
is no exact solution to (11). Instead a Least Square Estimate (LSE) of X, X*, is 

sought to minimize the squared error 2BAX − . X* is computed using the 
pseudo-inverse of X: 

BAAAX TT 1* )( −=      (12) 

where TA  is the transpose of A and TT AAA 1)( − is the pseudo-inverse of A where 

AAT  is non-singular. Due to computational complexity, in ANFIS a sequential 
method is deployed as follows: 

 

Let the i-th row vector of matrix A defined in (11) be T
ia and i-th element of 

matrix B defined be T
ib , then X can be calculated iteratively using the following 

sequential formulae: 
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where iS  is often called the covariance matrix and the least squares estimate X* is 
equal to XP. The initial condition to bootstrap (13) are XO=0 and SO=� I, where � is 
a positive large number and I is the identity matrix of dimension M x M. For a 

multi-output ANFIS, (13) is still applicable except the ),( SIFoutput = will 
become a column vector. Each epoch of this hybrid learning procedure is 
composed of a forward pass and a backward pass. In the forward pass, we have to 
supply the input data and functional signals go forward to calculate each node 
output until the matrices A and B in (11) are obtained, and the parameters in 2S  
are identified by the sequential least squares formulae given in (13). After 
identifying parameters in 2S , the functional signals keep going forward till the 
error measure is calculated. In the backward pass, the error rates propagate from 
the output layer to the input layers, and the parameters in 1S  are updated by the 
gradient method given by 



α
ηα

∂
∂−=∆ E

     (14) 

where α  is the generic parameter, η  is a learning rate and E the error measure. 

For given fixed values of parameters in 1S , the parameters in 2S  thus found are 
guaranteed to be the global optimum point in the 2S  parameter space due to the 
choice of the squared error measure[14]. 

The procedure mentioned above is mainly for offline learning version. However 
the procedure can be modified for an online version by formulating the squared 
error measure as a weighted version that gives higher weighting factors to more 
recent data pairs. This amounts to the addition of a forgetting factor � to (13). 
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The value of � is between 0 and 1. The smaller the � is, faster the effects of old 
data decay. But a smaller � sometimes causes numerical instability and should be 
avoided. 

 

Figure 3. Architecture of EFuNN 

2.2 Evolving Fuzzy Neural Networks  

Evolving Fuzzy Neural Network (EFuNN) (Figure 3) implements a Mamdani type 
FIS and all nodes are created during learning [16]. The nodes representing 



membership functions (MFs) can be modified during learning. Each input variable 
is represented here by a group of spatially arranged neurons to represent a fuzzy 
quantization of this variable. For example, three neurons can be used to represent 
"small", "medium" and "large" fuzzy values of the variable. Different membership 
functions can be attached to these neurons (triangular, Gaussian, etc.). New 
neurons can evolve in this layer if, for a given input vector, the corresponding 
variable value does not belong to any of the existing MF to a degree greater than a 
membership threshold.  

The third layer contains rule nodes that evolve through hybrid 
supervised/unsupervised learning. The rule nodes represent prototypes of input-
output data associations, graphically represented as an association of hyper-
spheres from the fuzzy input and fuzzy output spaces. Each rule node, e.g. rj, 
represents an association between a hyper-sphere from the fuzzy input space and a 
hyper-sphere from the fuzzy output space; W1(rj) connection weights representing 
the co-ordinates of the center of the sphere in the fuzzy input space, and W2 (rj) – 
the co-ordinates in the fuzzy output space. The radius of an input hyper-sphere of 
a rule node is defined as (1- Sthr), where Sthr is the sensitivity threshold 
parameter defining the minimum activation of a rule node (e.g., r1, previously 
evolved to represent a data point (Xd1,Yd1)) to an input vector (e.g., (Xd2,Yd2)) in 
order for the new input vector to be associated with this rule node. Two pairs of 
fuzzy input-output data vectors d1=(Xd1,Yd1) and d2=(Xd2,Yd2) will be allocated to 
the first rule node r1 if they fall into the r1 input sphere and in the r1 output sphere, 
i.e. the local normalised fuzzy difference between Xd1 and Xd2 is smaller than the 
radius r and the local normalised fuzzy difference between Yd1 and Yd2 is smaller 
than an error threshold Errthr. The local normalised fuzzy difference between two 
fuzzy membership vectors d1f and d2f that represent the membership degrees to 
which two real values d1 and d2 data belong to the pre-defined MF, are calculated 
as D(d1f,d2f) = sum(abs(d1f - d2f ))/sum(d1f + d2f ).  

If data example d1 = (Xd1,Yd1), where Xd1 and Xd2 are correspondingly the input 
and the output fuzzy membership degree vectors, and the data example is 

associated with a rule node r1 with a center 1
1r , then a new data point 

d2=(Xd2,Yd2), will also be associated with this rule node through the process of 
associating (learning) new data points to a rule node. The centers of this node 
hyper-spheres adjust in the fuzzy input space depending on a learning rate lr1, and 
in the fuzzy output space depending on a learning rate lr2, on the two data point's 

d1 and d2. The adjustment of the center 1
1r to its new position 2

1r  can be 

represented mathematically by the change in the connection weights of the rule 

node r1 from W1(
1
1r ) and W2(

1
1r ) to W1(

2
1r ) and W2(

2
1r ) according to the 

following vector operations: 

W2 (
2
1r ) = W2(

1
1r ) + lr2 . Err(Yd1,Yd2) . A1(

1
1r )  (16) 



W1(
2

1r )=W1 ( 1
1r ) + lr1 . Ds (Xd1, Xd2)   (17) 

where Err(Yd1,Yd2)= Ds(Yd1,Yd2)=Yd1-Yd2 is the signed value rather than the 

absolute value of the fuzzy difference vector; A1(
1
1r ) is the activation of the rule 

node 1
1r for the input vector Xd2.  

While the connection weights from W1 and W2 capture spatial characteristics of 
the learned data (centers of hyper-spheres), the temporal layer of connection 
weights W3  captures temporal dependencies between consecutive data examples. 
If the winning rule node at the moment (t-1) (to which the input data vector at the 
moment (t-1) was associated) was r1=inda1(t-1), and the winning node at the 
moment t is r2=inda1(t), then a link between the two nodes is established as 
follows: 

W3(r1,r2) 
(t) = W3(r1,r2) 

(t-1) + lr3. A1(r1) 
(t-1) A1(r2)) 

(t),  (18) 

where: A1(r) (t) denotes the activation of a rule node r at a time moment (t); lr3 
defines the degree to which the EFuNN associates links between rules (clusters, 
prototypes) that include consecutive data examples (if lr3=0, no temporal 
associations are learned in an EFuNN structure). 

The learned temporal associations can be used to support the activation of rule 
nodes based on temporal, pattern similarity. Here, temporal dependencies are 
learned through establishing structural links. The ratio spatial-similarity/temporal-
correlation can be balanced for different applications through two parameters Ss 

and Tc such that the activation of a rule node r for a new data example dnew is 
defined as the following vector operations: 

A1 (r) = f ( Ss . D(r, dnew) + Tc .W3(r (t-1) , r))   (19) 

where f is the activation function of the rule node r, D(r, dnew) is the normalised 
fuzzy distance value and r (t-1) is the winning neuron at the previous time moment. 
The fourth layer of neurons represents fuzzy quantification for the output 
variables. The fifth layer represents the real values for the output variables. 

EFuNN evolving algorithm is given as a procedure of consecutive steps [16].  

1. Initialize an EFuNN structure with a maximum number of neurons and zero 
value connections. If initially there are no rule nodes connected to the fuzzy 
input and fuzzy output neurons, then create the first node rj=1 to represent 
the first data example EX= (Xd1, Yd1) and set its input W1 (rj) and output W2 
(rj) connection weights as follows: 

<Create a new rule node rj> to represent a data sample EX: W1 (rj)=EX: W2 

(rj)= TE, where TE is the fuzzy output vector for the (fuzzy) example EX. 

2. While <there are data examples> Do 



Enter the current, example (Xdi, Ydi), EX being the fuzzy input vector (the 
vector of the degrees to which the input values belong to the input 
membership functions). If there are new variables that appear in this 
example and have not been used in previous examples, create new input 
and/or output nodes with their corresponding membership functions. 

3. Find the normalized fuzzy similarity between the new example EX (fuzzy 
input vector) and the already stored patterns in the case nodes rj= r1, r2,….,rn  

D(EX,rj ) = sum (abs (EX - W1(rj ))) / sum (W1(rj ) + EX) 

4. Find the activation A1 (rj ) of the rule nodes rj= r1, r2,….,rn. Here radial basis 
activation (radbas) function, or a saturated linear (satlin) one, can be used, 
i.e.  

A1 (rj) = radbas (Ss D(EX, rj – Tc W3), or A1 (rj ) = satlin (1- Ss D(EX, rj  + Tc 

W3)). 

5. Update the pruning parameter values for the rule nodes, e.g. age, average 
activation as pre-defined. 

6. Find m case nodes rj with an activation value A1 (rj ) above a predefined 
sensitivity threshold Sthr. 

7. From the m case nodes, find one rule node inda1 that has the maximum 
activation value maxa1. 

8. If maxa1 < Sthr, then, <create a new rule node> using the procedure from 
step 1. 

Else 

9. Propagate the activation of the chosen set of m rule nodes (rj1,…,rjm) to the 
fuzzy output neurons: A2 = satlin (A1(rj1,…,rjm) . W2)  

10. Calculate the fuzzy output error vector 

Err=A2 -TE 

11. If (D(A2,TE) > Errthr) <create a new rule node> using the procedure from 
step 1. 

12. Update (a) the input, and (b) the output of the m-1 rule nodes k = 2 : jm in 
case of a new node was created, or m rule nodes k=j1 : jm, in case of no new 
rule was created:  

Ds(EX-W1(rk)) = EX - W1(rk); W1(rk) = W1(rk) + lr1 .Ds(EX-W1(rk)), where 
lr1 is the learning rate for the first layer; 

A2 (rk) = satlin (W2(rk).A1(rk)); Err(rk) = TE-A2(rk);  

W2(rk) = W2(rk) + lr2 . Err (rk) .A1(rk) , where lr2 is the learning rate for the 
second layer. 



13. Prune rule nodes rj and their connections that satisfy the following fuzzy 
pruning rule to a pre-defined level representing the current need of pruning: 

IF (a rule node rj is OLD) and (average activation A1av(rj) is LOW) and (the 
density of the neighboring area of neurons is HIGH or MODERATE) (i.e. 
there are other prototypical nodes that overlap with j in the input-output 
space; this condition apply only for some strategies of inserting rule nodes 
as explained below) THEN the probability of pruning node (rj) is HIGH. The 
above pruning rule is fuzzy and it requires that the fuzzy concepts as OLD, 
HIGH, etc. are predefined. 

14. Aggregate rule nodes, if necessary, into a smaller number of nodes. A C-
means clustering algorithm can be used for this purpose. 

15. End of the while loop and the algorithm  

The rules that represent the rule nodes need to be aggregated in clusters of rules. 
The degree of aggregation can vary depending on the level of granularity needed. 
At any time (phase) of the evolving (learning) process, fuzzy, or exact rules can be 
inserted and extracted [17]. Insertion of fuzzy rules is achieved through setting a 
new rule node for each new rule, such as the connection weights W1 and W2 of the 
rule node represent the fuzzy or the exact rule. The process of rule extraction can 
be performed as aggregation of several rule nodes into larger hyper-spheres. For 
the aggregation of two-rule nodes r1 and r2, the following aggregation rule is used 

If (D(W1(r1),W1(r2)) < = Thr1) and (D(W2(r1),W2(r2)) <= Thr2)  (20) 

then aggregate r1 and r2 into ragg and calculate the centers of the new rule node as 

W1(ragg) = average (W1(r1),W1(r2)), W2(ragg) = average (W2(r1),W2(r2)) (21) 

Here the geometrical center between two points in a fuzzy problem space is 
calculated with the use of an average vector operation over the two fuzzy vectors. 
This is based on a presumed piece-wise linear function between two points from 
the defined through the parameters Sthr and Errthr input and output fuzzy hyper-
spheres. 

2.3 Hybrid Fuzzy Neural Network (FNN) 

In a hybrid model, the neural network is used to learn and classify the patterns, 
automatically creating the fuzzy rules and the fuzzy logic is used to infer the 
defuzzified output. The structure of the fuzzy-neural network used is shown in 
Figure 4 [21]. 



  
Figure 4. Structure of the fuzzy neural network  

The main features of FNN are: 

• It provides a general method for combining available numerical 
information and human linguistic information in a common framework. 

• It requires much less construction time than a comparable neural 
network. 

• Significant accuracy is achieved in predicting chaotic time-series models. 

• The mean absolute error is reduced in case of FNN as compared to ANN. 

• The advantage of the FNN is its efficient adaptive tracking capability that 
results in the development of a robust and accurate forecasting technique, 
which gives an accurate forecast even under diverse weather conditions. 

This hybrid approach utilizes the inherent properties of artificial neural networks, 
such as generalization and adaptability, self-organization, ability to solve 
nonlinear problems, retrieval from partial information, learning from well-defined 
patterns; and properties of fuzzy logic, such as abstract reasoning and human-like 
responses in cases involving uncertainty and contradictory data. 

A fuzzy processor has been utilized for preprocessing the inputs with the 
application of fuzzy rules. The fuzzy processor effectively handles the numeric 
data and produces a fuzzy output vector, which is then fed to 3-layered 
feedforward neural network trained using backpropagation algorithm. The inputs 
to the neural network are processed by the ANN, which generates response at its 
output layer. This response is compared with the desired output and their 
difference is propagated backwards through the network connections to reduce 
this error. The learning data is presented repeatedly until the errors are reduced to 
an acceptable level. Once trained, the outputs of the neural network, interpreted as 



fuzzy membership functions of the desired output, are defuzzified to get the 
required output. In defuzzification, all significant fuzzy outputs are combined into 
a specific, comprehensive result for that output variable. In this process, all the 
fuzzy output values effectively modify their respective output membership 
functions. The ANN is allowed to train until it maps the input-output relationship 
with the desired accuracy [19][22][20].  

3. Modern Energy Management  

Energy generation, distribution and management is changing dramatically. In a 
few years, the concepts we have all grown up will might be gone forever. The 
traditional gas and electric companies as we know them today will be in a very 
different business, competing on the open market and possibly combining 
services. Deregulated electricity supply markets can mean substantial electricity 
cost savings for consumers willing to take the time to study the opportunities. In a 
deregulated electricity supply market, there are theoretically numerous merchant 
power companies with generation assets standing by to provide consumers with 
the power they need to operate the homes and businesses at a fair price. 
Consumers are theoretically able to negotiate with the merchant power companies 
to agree to a price for power, which will be added to the charges imposed by the 
incumbent transmission and distribution grid owners to deliver power to the 
consumer. However, not all customers will be able to get the same good deal as 
every other customer, economies of scale aside. 

In a perfect world, every customer would use a constant amount of power at all 
times of the day and every day of the year. This would make it easy for the 
companies saddled with the responsibility of maintaining and operating the 
electricity generation and distribution systems to keep everything running 
smoothly, and at an economical price. Unfortunately for everybody, the world 
doesn not work that way. People use more power at peak hours during the day 
when they are operating power-hungry machines under bright fluorescent lights in 
air-conditioned offices, than they use at night when they at home in bed. This 
means that utility companies must make allowances for mid-day peaks in power 
consumption as they provide for the generation, transmission and distribution of 
power to customers in the city. 

The prediction of electricity demand has been of much interest to the electricity 
supply industry for some years, both to aid long term planning strategies, 
involving the forecasting of seasonal peak demands, and for use in the short term 
(up to 24 hours) operation of generating plant. The nature of electricity market is 
changing very rapidly with a widespread international movement towards 
competitiveness. Traditionally, the energy sector, and particularly the electricity 
sector, has been dominated by monopoly or near monopoly enterprises, typically 



either owned or regulated by government. The recent privatization of the 
electricity supply industry has brought a renewed interest in this subject.  

Some countries, such as Norway, Chile, Japan, UK and the United States have 
commonly been supplied electricity by a large number of different regional 
Generators and have developed a variety of mechanisms to allow some form of 
trade between them. In 1994 Victoria started the process of privatization and 
restructuring electricity industry to generate competition. The objective was to 
promote a more flexible, cost-effective and efficient electricity industry with the 
aim of delivering cheaper electricity to business and the general community. 
Following success of this operation, Australia started the process of implementing 
a unified National Electricity Market in December 1998 [8]. 

3.1 Modeling Electricity Demand Prediction in Victoria (Australia) 

To meet the electricity market demands a highly reliable supply and delivery 
system is required. Additionally, in order to gain a competitive advantage in this 
market through the competitive spot-market pricing an accurate forecast of 
electricity demand at regular time intervals is essential. Until 1996, Victorian 
Power Exchange (VPX) the body responsible for the secure operations of the 
power system, generated electricity demand forecasts based on weather forecasts 
and historical demand patterns [28]. Our research is focused on developing more 
accurate and reliable forecasting models that improves current forecasting 
methods. Our approach is to develop reliable and accurate prediction models 
predicting 96 half-hourly (two days ahead) demands for electricity, and compares 
their performance with forecasts used by VPX. We considered an integrated 
neuro-fuzzy system and a feedforward artificial neural network trained using the 
scaled gradient conjugate algorithm and backpropagation algorithm. For 
developing the forecasting models we used the energy demand data for ten months 
period from 27th January to 30th November 1995 in the State of Victoria. We also 
made use of the associated data stating the minimum and maximum temperature 
of the day, time of day, season and the day of week. The forecasting models were 
trained using 3 randomly selected samples containing 20% of the data during the 
period 27th January 1995 to 28th  November 1995. To ascertain the forecasting 
accuracy the developed models were tested to predict the demand for the period 
(29th –30th ) November 1995 [8]. 



 

Figure 5. Typical weekly demand variations 

The data for our study were the recorded half-hourly actual electricity demand for 
the ten months period from January to November 1995 in the State of Victoria. 
Figure 5 shows a typical weekly cycle of electricity demand during three different 
months of the year. Fluctuations in daily demand are prevalent with peaks 
occurring around midday. Extreme weather conditions in winter and summer 
months accentuate peaks in electricity demand due to the widespread use of 
electricity for heating and cooling. Other times, electricity demand is dominated 
primarily by ambient temperature, time of day, working or non-working day and 
the day of the week. 

The experimental system consists of two stages: modeling the prediction systems 
(training in the case of soft computing models) and performance evaluation. For 
network training, the six selected input descriptor variables were: the minimum 
and maximum recorded temperatures, previous day's demand, a value expressing 
the half-hour period of the day, season, and the day of the week. To evaluate the 
learning capability of the soft computing models, the network was trained only on 
20% of the randomly selected data. We created 3 different samples of training data 
to study the effect of random sampling and periodicity. Each training sample 
consisted of 2937 data sets representing 20% random data. Our objective is to 
develop an efficient forecasting model capable of producing a short-term forecast 
of demand for electricity. The required time-resolution of the forecast is half-
hourly, and the required time-span of the forecast is 2 days. This means that the 
system should be able to produce a forecast of electricity demand for the next 96 
time periods. The training was replicated three times using three different samples 
of training data and different combinations of network parameters.  

• Neuro-Fuzzy Training 

We used 4 Gaussian membership functions for each input variable and the 
following evolving parameters: sensitivity threshold Sthr = 0.99, error threshold 



Errthr=0.001 and learning rates for first and second layer = 0.05. EFuNN uses a 
one pass training approach. The network parameters were determined using a trial 
and error approach. The training was repeated three times after reinitializing the 
network and the worst errors were reported. Online learning in EFuNN resulted in 
creating 2122 rule nodes. Training results and test results are summarized in Table 
1. 

• Neural Network training 

Our preliminary experiments helped us to formulate a feedforward neural network 
with 1 input layer, 2 hidden layers and an output layer [6-40-40-1]. Input layer 
consists of 6 neurons corresponding to the input variables. The first and second 
hidden layers consist of 40 neurons respectively using tanh-sigmoidal activation 
functions. To illustrate the convergence feature of Scaled Conjugate Gradient 
Algorithm (SCGA), we also trained a neural network (with same architecture) 
using backpropagation (BP) algorithm. To evaluate the neural network 
performance, training was terminated after 2500 epochs. Training and testing 
errors are summarized in Table 1. Figure 6 shows the convergence of SCGA with 
respect to BP algorithm. Figure 7 depicts the test results for prediction models 
considered. To have a performance evaluation the actual energy demand and the 
forecasts used by VHP and Box - Jenkins ARIMA model are also plotted in Figure 
7.  Compared to neural networks, an important advantage of neuro-fuzzy systems 
is its reasoning ability (if-then rules) of any particular state. A fully trained 
EFuNN could be replaced by a set of if-then rules [17]. A simple example of a 
learned EFuNN learned rule is illustrated below.  

" If the maximum temperature of the day is HIGH and minimum temperature of 
the day is LOW and previous days demand is MEDIUM and it is summer (HIGH) 
and 9.00 AM (HIGH) and a Monday (HIGH) then the electricity demand is 
MEDIUM." 

 

Figure 6. Convergence of neural network training 



 

Figure 7. Test results and performance comparison of demand forecasts (2 days) 

EFuNN uses a hybrid learning technique (a mixture of unsupervised and 
supervised learning) to fine-tune the parameters of the fuzzy inference system. As 
EFuNN adopts a single pass training (1 epoch) it is more adaptable and easy for 
further online training which might be highly useful for online forecasting and 
bidding. Another important feature of EFuNN is that the user has the flexibility to 
construct the network (by selecting the parameters). Hence for applications where 
speed is more important than the accuracy a faster network can be selected. 
However an important disadvantage of EFuNN is the determination of the 
network parameters like number and type of membership functions for each input 
variable, sensitivity threshold, error threshold and the learning rates. Even though 
a trial and error approach is practical, when the problem becomes complicated 
(large number of input variables) determining the optimal parameters will be a 
tedious task. 

Table 1. Test results and performance comparison of demand forecasting [8] 

 EFuNN 
ANN 

(BP) 

ANN 

(SCGA) 
ARIMA 

Learning epochs 1 2500 2500 - 

Training error (RMSE) 0.0013 0.116 0.0304 - 

Testing error (RMSE) 0.0092 0.118 0.0323 0.0423 

Computational load (in billion 
flops) 0.536 87.2 175.0 - 



Our experiments on three separate data samples reveal that the results are not 
dependent on the data sample. We used only 20% of the total data to evaluate the 
learning capability of the soft computing models. Network performance could 
have been further improved by providing more training data. Another interesting 
fact about the considered soft computing models are their robustness and 
capability to handle noisy and approximate data that are typical in power systems, 
and therefore should be more reliable in worst situations. 

3.2 Automation of Reactive Power Control 

The ratio of active power (P) measured in watts to the apparent power (S) in volt-
amperes is termed the power factor: 

Power factor = 
 Zimpedance
R resistance

S
P

)( cos ==ϕ    (22) 

 
Figure 8. Reactive power demand variations during peak hours 

It has become a normal practice to say that the power factor is lagging when the 
current lags the supply voltage and leading when the current leads the supply 
voltage. This means that the supply voltage is regarded as the reference quantity. 
A majority of loads served by a power utility draw current at a lagging power 
factor. When the power factor of the load is unity, active power equals apparent 
power (P = S). But, when the power factor of the load is less than unity, say 0.6, 
the power utilized is only 60%. This means that 40% of the apparent power is 
being utilized to supply the reactive power, VAR, demand of the system. It is 
therefore clear that the higher the power factor of the load, the greater the 
utilization of the apparent power. For the generating and transmission stations, 
lower the power factor the larger must be the size of the source to generate that 
power, and greater must be the cross-sectional area of the conductor to transmit it. 



In other words, the greater is the cost of generation and transmission of the power. 
Moreover, lower power factor will also increase the I2R (I denotes current) losses 
in lines/equipment as well as result in poor voltage regulation. 

Most of the utility companies use a complex set of formulas, rewards/penalties etc. 
to receive an adequate return for their considerable investment in the larger 
capacity generators, transformers, cables and switchgear required to provide 
necessary KVA service to their customers. These formulas are generally referred 
to as power factor adjustments or KVAR reactive demand charges. In recent years, 
increased attention has been given to plant automation to reduce operational costs. 
Many manufacturing industries use human operators or timer controlled switching 
relays to turn on the power capacitors to compensate the reactive power 
requirement. Operational costs could be reduced and utilization efficiency 
improved if the power capacitor switching on/off process is automated using some 
intelligent techniques. We proposed a neuro-fuzzy approach to predict the reactive 
power trend (at time t+1) just by knowing the load current (at time t). Efficient 
usage of the VA loading will not only improve the overall grid condition but also 
reduce the consumer’s industrial tariffs. Depending on the predicted reactive 
power demand, power factor corrective measures could be turned on or off to 
control the VA inflow into the plant. The developed model could be extremely 
useful for automated control of power inflow, especially in the countries where 
there are limitations on the usage of consumers’ peak VA maximum demand [6]. 

We considered a heavy automobile manufacturing industry that works on 3 shifts 
of 8 hours duration for studying the load demand patterns. Observed data for a 24 
hour period shows that the maximum and minimum VAR requirements are 2.96 
MVAR and 0.014 MVAR, respectively [3][6]. The variation of the reactive power 
flow during the peak hours of the three 8-hour shifts is depicted in Figure 8. If 
suitable power factor compensation was made when the reactive power demand 
was increasing, the plant might not have drawn much apparent power from the 
grid. The task is to predict the upward and downward trend of the reactive power 
demand and provide required reactive power compensation. Load flow analysis of 
the captioned plant reveals that the demand patterns are very similar every day (as 
long as the production of automobiles remain fixed). 

The proposed neuro-fuzzy models and neural network were trained on the data 
taken at every minute for a 24-hour period to predict the reactive power demand, 
and tested to evaluate the prediction accuracy. To evaluate the efficiency of the 
prediction models, three different training and testing data sets were extracted and 
the experiments were performed three times. 

• Experimentation Setup and Test Results 

24-hour load flow patterns were used to train the neuro-fuzzy models and neural 
network. The training data comprises of 1440 data sets representing the 24-hour 
period. The input parameters considered are the phase voltage (V) and current (I). 
The normal value of input parameter voltage (V) was fluctuated with +/- 2.5% of 
the normal value. All the data sets were scaled from 0 to 1. The input voltage was 



fluctuated to test the learning capability and robustness of the considered 
connectionist models. Training and testing data sets were extracted randomly from 
the complete dataset. 60% of data was used for training and remaining 40% for 
testing. To ensure that the data sample does not have any bias, we created 3 sets of 
data for training and testing (random extraction). Experiments with all 3 data sets 
were repeated 3 times for all the connectionist models. 

• Neural network training  

We used a feedforward neural network with 2 hidden layers and trained using the 
backpropagation algorithm. The 2 input neurons correspond to the input variables 
and 1 output neuron for predicting reactive power. Initial weights, learning rate 
and momentum used were 0.3, 0.1 and 0.1, respectively. The training was 
terminated after 700 epochs. 

• ANFIS training 

In the ANFIS network, we used 3 Gaussian membership functions for each input 
parameter variable for predicting the reactive power demand. Nine rules were 
learned based on the training data. The training was terminated after 50 epochs. 

• EFuNN training 

We used 3 Gaussian membership functions and the following evolving 
parameters: sensitivity threshold Sthr=0.95, error threshold Errthr=0.05 and 544 
rule nodes were created during training. 

 

Figure 9. Test results showing the predicted reactive power using different models 
during the peak hours of shift 1. 

 



Table 2. Reactive power prediction –comparative performance 

 ANFIS EFuNN ANN 

Learning epochs 50 1 700 

Training time (seconds) 36 25 188 

Training error (RMSE) 0.0103 0.0116 0.0142 

Testing error (RMSE) 0.0102 0.0120 0.0130 

• Performance and Results Achieved  

Test data (input parameters) is passed through the trained connectionist models 
and the predicted output value is compared with the observed reactive power value 
to calculate the RMSE. Figures 9 illustrates the test results for predicted outputs 
using ANFIS, EFuNN and ANN. Table 2 shows an empirical comparative 
performance of the different connectionist models for the reactive power 
prediction problem. The empirical values shown in Table 2 are the worst values of 
the three trials with the three data sets for each model. 

Among all the connectionist models neuro-fuzzy systems performed better than 
artificial neural network in terms of performance error achieved and training time. 
ANFIS performed marginally better than EFuNN in terms of low error. However 
ANFIS took more training time than EFuNN. Hence there is a compromise 
between performance error and training time. An important advantage of the 
EFuNN network is its online learning capability. Hence future training would be 
much easier. The predicted RMSE values are within acceptable rates and hence 
the developed models are reliable. The prediction accuracy could have been 
improved if we had not used the noisy input parameter (voltage) or if the actual 
voltage values were used.  

3.3 Load Forecasting in Czech Republic 

The hourly load in the Czech Republic for the year 2000 is shown in Figure 10. 
The humidity is sorted into seven categories and labeled as extremely low (ExL), 
very low (VL), low (L), medium (M), high (H), very high (VH) and extremely 
high (ExH). The wind speed is labeled as zero (Z), positive very small (PVS), 
positive small (PS), medium (M), positive medium (PM), big (B) and positive big 
(PB). Similarly, wind chill is labeled as zero (Z), very very low (VVL), very low 
(VL), low (L), high (H), very high (VH) and extremely high (ExH) as shown in 
Figure 11. Inputs to the FNN are previous load and weather parameters i.e. 



temperature, humidity, wind-speed, and wind-chill and the output of the FNN is 
the load forecast for a given day [21][22].  

  
Figure 10. Hourly load of the year 2000 

The proposed fuzzy processor develops a linguistic model that describes dynamic 
behavior of the system by using a nonlinear mapping between input and output. 
Application of fuzzy inference rules allows amalgamation of different kinds of 
knowledge, reduces the dimensionality of the input data and effectively deals with 
nonprecise (fuzzy) information. The potentials of this technique come from its 
powerful hybrid methodology and extraordinary approximation power. 
Furthermore, the ability to incorporate human knowledge makes it a more 
beneficial candidate over others. The results obtained outperform the connectionist 
approaches. 

The fuzzy processor increases the robustness of the forecast model in tackling 
uncertainties and ambiguity in the inputs. It also avoids the use of large chunk of 
historical data, and frequent retraining in response to changing input conditions. 
The fuzzy-neural network learns the training set near perfect and shows precise 
prediction.  Further improvements to the current implementation could be be made 
using more complete historical load/meteorological data, improving the rules and 
refining the training strategies to incorporate incremental learning. 

 



 
Figure 11. Input parameters using Gaussian-curve membership function. 

In our experiments, two years of historical load and weather data were used, one 
year (1999) for designing the fuzzy rule base design and the following year (2000) 
for testing the model performance. We used a Mamdani fuzzy inference system 
for predicting the 24-hour ahead (weekdays and weekends) load demand. To 
ensure prediction accuracy, the number of fuzzy membership functions and shape 
of the fuzzy membership functions were changed and new fuzzy rule base was 
obtained. The iterative process of designing the rule base, choosing a 
defuzzification algorithm, and testing the system performance was repeated 
several times with a different shapes number of fuzzy membership functions. The 
fuzzy rule base that provided the minimum error measure for the test set was 
selected for real-time forecast. We used various Membership Functions (MF) such 
as triangular, trapezoidal, Gaussian-curve and bell-shaped. The performance of 
triangular and Gaussian-curve membership functions were better as compared to 
bell-shaped and trapezoidal. Using different MF, the mean absolute percentage 
error (MAPE) and maximum absolute percentage error (MAP) for working days 
of the week and weekend are depicted in Tables 3 and 4 respectively. Empirical 
values from Tables 3 and 4 illustrates that the selection of different MFs e.g., 



triangular, Gaussian, trapezoidal etc. significantly affect the prediction 
performance. 

Table 3:  MAPE and MAP for working days of a week using various MFs. 

Membership Functions 

Triangular Gaussian Curve Trapezoidal 
 

Working 

Days MAPE 
(%) 

MAP 
(%) 

MAPE 
(%) 

MAP 
(%) 

MAPE 
(%) 

MAP 
(%) 

Monday 2.58 6.46 2.84 7.79 2.73 5.84 

Tuesday 1.67 4.89 1.18 4.97 2.59 6.82 

Wednesday 0.99 3.23 1.87 4.64 1.91 4.74 

Thursday 0.97 4.89 1.53 5.52 2.67 5.74 

Friday 1.34 3.89 1.69 4.96 2.94 4.85 

 

Table 4. MAPE and MAP for one weekend using various membership functions. 

Membership Functions 

Triangular Gaussian Curve Trapezoidal Weekend 
Days 

MAPE 
(%) MAP (%) MAP

E (%) 
MAP 
(%) 

MAPE 
(%) 

MA
P 
(%) 

Saturday 3.52 8.08 4.82 7.74 5.03 8.66 

Sunday 3.76 7.47 4.68 8.71 5.06 9.84 

• Training and Test Data 

The basic training set using 24 values of load data and 6 weather parameters (i.e. 
minimum, maximum and average temperatures, humidity, wind speed and wind 
chill) and the day of the week was used for training and testing as shown in Figure 
12. To ensure good training, the network was trained using a large data set using 
data containing values from 1995 to 1999. Besides, the utilization of a large 
amount of training patterns is an effective antidote to fight against over fitting .  



 

Figure 12. Input data scheme to load forecasting models. 
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Figure 13.  Load trend for a working day, weekend and holiday (special day) of a 
week in the year 2000. 

On the other hand, the whole process is slower and morose, due to the 
computation time required. The load demand patters are different for working 
days, weekends and holidays as shown in Figure 13. The data for holidays were 
eliminated. Thus the training data was distributed into two sets for working days 
and weekends, respectively. The data for the year 2000 is used for testing and 
evaluation of generalization performance.  For empirical comparison purposes, 
using the same training data, we also trained an artificial neural network using 
backpropagation algorithm and also developed a Takagi-Sugeno fuzzy inference 
system.  Test data is passed through the trained networks and the performances are 
depicted in Tables 5 and 6. Figures 14 and 15 illustrates the forecast load versus 
the actual load along with the forecast error for one working day (Tuesday) and 
one weekend day (Sunday), respectively. Our training results also reveals that the 
FNN converged much faster when compared to a pure neural network approach. 



Table 5. MAPE and MAP of 24-hour forecast during weekends. 

Saturday Sunday  

Models *MAPE (%) *MAP (%) MAPE (%) MAP (%) 

ANN 2.361 5.22 2.614 5.76 

FIS 2.882 6.15 2.764 6.42 

FNN 1.893 3.81 2.008 4.23 

Table 6.  MAPE and MAP of 24-hour forecast during weekdays (working days). 

Monday Tuesday Wednesday  

Models MAPE MAP MAPE MAP MAPE MAP 

ANN 2.416 5.123 2.321 5.446 2.272 6.142 

FIS 2.540 4.678 2.524 5.120 1.987 5.378 

FNN 2.000 3.210 1.729 3.151 1.672 3.870 

 

Thursday Friday  

Models MAPE MAP MAPE MAP 

ANN 2.614 6.113 2.583 5.893 

FIS 2.786 5.820 2.862 5.416 

FNN 1.340 3.672 1.435 3.163 



 
Figure 14.  Comparison of 24 hours ahead load forecast for working day 
(Tuesday) using FNN, FIS and ANN 

 
Figure 15.  Comparison of 24 hours ahead load forecast for weekend day 
(Sunday) using FNN, FIS and ANN 



4.  Conclusions 

In this chapter, we attempted to model the integration of neural networks and 
fuzzy inference systems for energy management problems. For the demand energy 
demand and reactive power forecast problem, the proposed neuro-fuzzy approach 
performed better than the neural network model in terms of low RMSE error and 
less computational load (less performance time). As depicted in Figure 6 our 
experimentation results reveal that ANN trained by SCGA converged much faster 
than BP algorithm. Alternatively, BP training needs more epochs (longer training 
time) to achieve better performance. The neuro-fuzzy models considered on the 
other hand are easy to implement and produces desirable mapping function by 
training on the given data set. All the neuro-fuzzy models require information only 
about the input variables for generating forecasts thereby reducing the tedious 
analysis and trail and error methods as in the case of ARIMA model.  

EFuNN makes use of the linguistic knowledge of FIS and the learning capability 
of neural networks. Hence, the neuro-fuzzy system is able to precisely model the 
uncertainty and imprecision within the data as well as to incorporate the learning 
ability of neural networks. Even though the performance of neuro-fuzzy systems is 
dependent on the problem domain, very often the results are better while 
compared to pure neural network approach. Compared to neural networks, an 
important advantage of neuro-fuzzy systems is its reasoning ability (if-then rules) 
of any particular state. A fully trained EFuNN could be replaced by a set of if-then 
rules. A simple example of a learned EFuNN learned rule is illustrated below.  

"If the maximum temperature of the day is HIGH and minimum temperature of the 
day is LOW and previous days demand is MEDIUM and it is summer (HIGH) and 
9.00 a.m. (HIGH) and a Monday (HIGH) then the electricity demand is 
MEDIUM."  

As EFuNN adopts a single pass training (1 epoch) it is more adaptable and easy 
for further on-line training which might be highly useful for on-line forecasting 
and bidding. Another important feature of EFuNN is that the user has the 
flexibility to construct the network (by selecting the parameters). Hence, for 
applications where speed is more important than the accuracy a faster network can 
be selected. However, an important disadvantage of EFuNN is the determination 
of the network parameters like number and type of MF for each input variable, 
sensitivity threshold, error threshold and the learning rates. Even though a trial and 
error approach is practical, when the problem becomes complicated (large number 
of input variables) determining the optimal parameters will be a tedious task.  

The hybrid fuzzy neural network combine the advantages of fuzzy systems, which 
deal with explicit knowledge, which can be explained and understood, and neural 
networks, which deal with implicit knowledge, that could be acquired by learning. 
Neural network learning provides a good way to adjust the expert's knowledge and 



automatically generate additional fuzzy rules and membership functions, to meet 
certain specifications and reduce design time and costs. The proposed FNN 
approach is found to be very powerful and robust for short-term load predictions. 
The simulated results using the FNN network are quite significant compared with 
the simple ANN and FIS based techniques. By using this hybrid approach, the 
load forecasting errors are reduced considerably. The advantage of the FNN is its 
adaptive tracking capability that has resulted in the development of a robust and 
effective forecasting technique.  On the other hand, fuzzy logic enhances the 
generalization capability of a neural network system by providing more reliable 
output when extrapolation is needed beyond the limits of the training data. 
Furthermore, modified and new rules can be extracted from a properly trained 
hybrid network model, to explain how the results are derived. 

Another interesting fact about the considered soft computing models are their 
robustness and capability to handle noisy and approximate data that are typical in 
power systems, and therefore, should be more reliable in worst situations.  
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